These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 21094695)
1. Iron and nitrosative metabolism in the Antarctic mollusc Laternula elliptica. González PM; Puntarulo S Comp Biochem Physiol C Toxicol Pharmacol; 2011 Mar; 153(2):243-50. PubMed ID: 21094695 [TBL] [Abstract][Full Text] [Related]
2. Iron and radical content in Mya arenaria. Possible sources of NO generation. González PM; Abele D; Puntarulo S Aquat Toxicol; 2008 Aug; 89(2):122-8. PubMed ID: 18657326 [TBL] [Abstract][Full Text] [Related]
3. Fe, oxidative and nitrosative metabolism in the Antarctic limpet Nacella concinna. González PM; Puntarulo S Comp Biochem Physiol A Mol Integr Physiol; 2016 Oct; 200():56-63. PubMed ID: 27109199 [TBL] [Abstract][Full Text] [Related]
4. Oxidative stress in limpets exposed to different environmental conditions in the Beagle Channel. Malanga G; Estevez MS; Calvo J; Puntarulo S Aquat Toxicol; 2004 Sep; 69(4):299-309. PubMed ID: 15312715 [TBL] [Abstract][Full Text] [Related]
5. Differential effect of buffer on the spin trapping of nitric oxide by iron chelates. Porasuphatana S; Weaver J; Budzichowski TA; Tsai P; Rosen GM Anal Biochem; 2001 Nov; 298(1):50-6. PubMed ID: 11673894 [TBL] [Abstract][Full Text] [Related]
6. Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III). Pérez-De La Cruz V; González-Cortés C; Galván-Arzate S; Medina-Campos ON; Pérez-Severiano F; Ali SF; Pedraza-Chaverrí J; Santamaría A Neuroscience; 2005; 135(2):463-74. PubMed ID: 16111817 [TBL] [Abstract][Full Text] [Related]
7. Lipid radical generation in polar (Laternula elliptica) and temperate (Mya arenaria) bivalves. Susana Estevez M; Abele D; Puntarulo S Comp Biochem Physiol B Biochem Mol Biol; 2002 Aug; 132(4):729-37. PubMed ID: 12128059 [TBL] [Abstract][Full Text] [Related]
8. Labile iron pool and ferritin content in developing rat brain gamma-irradiated in utero. Robello E; Galatro A; Puntarulo S Neurotoxicology; 2009 May; 30(3):430-5. PubMed ID: 19442828 [TBL] [Abstract][Full Text] [Related]
9. Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase. Berka V; Yeh HC; Gao D; Kiran F; Tsai AL Biochemistry; 2004 Oct; 43(41):13137-48. PubMed ID: 15476407 [TBL] [Abstract][Full Text] [Related]
10. Nitric oxide synthase: involvement of oxygen radicals in conversion of L-arginine to nitric oxide. Mittal CK Biochem Biophys Res Commun; 1993 May; 193(1):126-32. PubMed ID: 7684903 [TBL] [Abstract][Full Text] [Related]
11. Seasonality and toxins effects on oxidative/nitrosative metabolism in digestive glands of the bivalve Mytilus edulis platensis. González PM; Puntarulo S Comp Biochem Physiol A Mol Integr Physiol; 2016 Oct; 200():79-86. PubMed ID: 27132244 [TBL] [Abstract][Full Text] [Related]
12. Autoinhibition of neuronal nitric oxide synthase: distinct effects of reactive nitrogen and oxygen species on enzyme activity. Kotsonis P; Frey A; Fröhlich LG; Hofmann H; Reif A; Wink DA; Feelisch M; Schmidt HH Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):745-52. PubMed ID: 10359660 [TBL] [Abstract][Full Text] [Related]
13. Reactivity of the flavin semiquinone of nitric oxide synthase in the oxygenation of arginine to NG-hydroxyarginine, the first step of nitric oxide synthesis. Witteveen CF; Giovanelli J; Yim MB; Gachhui R; Stuehr DJ; Kaufman S Biochem Biophys Res Commun; 1998 Sep; 250(1):36-42. PubMed ID: 9735327 [TBL] [Abstract][Full Text] [Related]
14. Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes. Bitar MS; Wahid S; Mustafa S; Al-Saleh E; Dhaunsi GS; Al-Mulla F Eur J Pharmacol; 2005 Mar; 511(1):53-64. PubMed ID: 15777779 [TBL] [Abstract][Full Text] [Related]
15. Electron paramagnetic resonance spectroscopy with N-methyl-D-glucamine dithiocarbamate iron complexes distinguishes nitric oxide and nitroxyl anion in a redox-dependent manner: applications in identifying nitrogen monoxide products from nitric oxide synthase. Xia Y; Cardounel AJ; Vanin AF; Zweier JL Free Radic Biol Med; 2000 Oct; 29(8):793-7. PubMed ID: 11053782 [TBL] [Abstract][Full Text] [Related]
17. Xanthine oxidase- and iron-dependent lipid peroxidation. Miller DM; Grover TA; Nayini N; Aust SD Arch Biochem Biophys; 1993 Feb; 301(1):1-7. PubMed ID: 8382902 [TBL] [Abstract][Full Text] [Related]
18. Substrate and substrate analog binding to endothelial nitric oxide synthase: electron paramagnetic resonance as an isoform-specific probe of the binding mode of substrate analogs. Salerno JC; Martásek P; Williams RF; Masters BS Biochemistry; 1997 Sep; 36(39):11821-7. PubMed ID: 9305973 [TBL] [Abstract][Full Text] [Related]
19. Application of electron spin resonance spin-trapping technique for evaluation of substrates and inhibitors of nitric oxide synthase. Saito K; Kohno M Anal Biochem; 2006 Feb; 349(1):16-24. PubMed ID: 16360110 [TBL] [Abstract][Full Text] [Related]
20. Exposure to excess dissolved iron in vivo affects oxidative status in the bivalve Mya arenaria. González PM; Abele D; Puntarulo S Comp Biochem Physiol C Toxicol Pharmacol; 2010 Aug; 152(2):167-74. PubMed ID: 20398794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]