These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 21095218)

  • 1. Mining Dense Overlapping Subgraphs in weighted protein-protein interaction networks.
    Lee AJ; Lin MC; Hsu CM
    Biosystems; 2011 Mar; 103(3):392-9. PubMed ID: 21095218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mining coherent dense subgraphs across massive biological networks for functional discovery.
    Hu H; Yan X; Huang Y; Han J; Zhou XJ
    Bioinformatics; 2005 Jun; 21 Suppl 1():i213-21. PubMed ID: 15961460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AVID: an integrative framework for discovering functional relationships among proteins.
    Jiang T; Keating AE
    BMC Bioinformatics; 2005 Jun; 6():136. PubMed ID: 15929793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining functional and topological properties to identify core modules in protein interaction networks.
    Lubovac Z; Gamalielsson J; Olsson B
    Proteins; 2006 Sep; 64(4):948-59. PubMed ID: 16794996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex discovery from weighted PPI networks.
    Liu G; Wong L; Chua HN
    Bioinformatics; 2009 Aug; 25(15):1891-7. PubMed ID: 19435747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of core-attachment complexes based on maximal frequent patterns in protein-protein interaction networks.
    Yu L; Gao L; Kong C
    Proteomics; 2011 Oct; 11(19):3826-34. PubMed ID: 21761565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A degree-distribution based hierarchical agglomerative clustering algorithm for protein complexes identification.
    Yu L; Gao L; Li K; Zhao Y; Chiu DK
    Comput Biol Chem; 2011 Oct; 35(5):298-307. PubMed ID: 22000801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization and analysis of the complexome network of Saccharomyces cerevisiae.
    Li SS; Xu K; Wilkins MR
    J Proteome Res; 2011 Oct; 10(10):4744-56. PubMed ID: 21842913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting functional modules in the yeast protein-protein interaction network.
    Chen J; Yuan B
    Bioinformatics; 2006 Sep; 22(18):2283-90. PubMed ID: 16837529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of functional modules from protein interaction networks with an enhanced random walk based algorithm.
    Cai B; Wang H; Zheng H; Wang H
    Int J Comput Biol Drug Des; 2011; 4(3):290-306. PubMed ID: 21778561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting protein function by frequent functional association pattern mining in protein interaction networks.
    Cho YR; Zhang A
    IEEE Trans Inf Technol Biomed; 2010 Jan; 14(1):30-6. PubMed ID: 19726271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A lock-and-key model for protein-protein interactions.
    Morrison JL; Breitling R; Higham DJ; Gilbert DR
    Bioinformatics; 2006 Aug; 22(16):2012-9. PubMed ID: 16787977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of protein complexes using a protein ranking algorithm.
    Zaki N; Berengueres J; Efimov D
    Proteins; 2012 Oct; 80(10):2459-68. PubMed ID: 22685080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of functional modules in a PPI network by clique percolation clustering.
    Zhang S; Ning X; Zhang XS
    Comput Biol Chem; 2006 Dec; 30(6):445-51. PubMed ID: 17098476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein complex prediction based on simultaneous protein interaction network.
    Jung SH; Hyun B; Jang WH; Hur HY; Han DS
    Bioinformatics; 2010 Feb; 26(3):385-91. PubMed ID: 19965885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps.
    Nabieva E; Jim K; Agarwal A; Chazelle B; Singh M
    Bioinformatics; 2005 Jun; 21 Suppl 1():i302-10. PubMed ID: 15961472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein complex prediction via dense subgraphs and false positive analysis.
    Hernandez C; Mella C; Navarro G; Olivera-Nappa A; Araya J
    PLoS One; 2017; 12(9):e0183460. PubMed ID: 28937982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting protein complexes by data integration of different types of interactions.
    Tan PP; Dargahi D; Pio F
    Int J Comput Biol Drug Des; 2010; 3(1):19-30. PubMed ID: 20693608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B; Guan J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):616-27. PubMed ID: 26356332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying protein complexes from interactome based on essential proteins and local fitness method.
    Wang J; Chen G; Liu B; Li M; Pan Y
    IEEE Trans Nanobioscience; 2012 Dec; 11(4):324-35. PubMed ID: 22711784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.