BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 21095588)

  • 1. Splicing-dependent RNA polymerase pausing in yeast.
    Alexander RD; Innocente SA; Barrass JD; Beggs JD
    Mol Cell; 2010 Nov; 40(4):582-93. PubMed ID: 21095588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons.
    Carrillo Oesterreich F; Preibisch S; Neugebauer KM
    Mol Cell; 2010 Nov; 40(4):571-81. PubMed ID: 21095587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A splicing-dependent transcriptional checkpoint associated with prespliceosome formation.
    Chathoth KT; Barrass JD; Webb S; Beggs JD
    Mol Cell; 2014 Mar; 53(5):779-90. PubMed ID: 24560925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extremely fast and incredibly close: cotranscriptional splicing in budding yeast.
    Wallace EWJ; Beggs JD
    RNA; 2017 May; 23(5):601-610. PubMed ID: 28153948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription rate strongly affects splicing fidelity and cotranscriptionality in budding yeast.
    Aslanzadeh V; Huang Y; Sanguinetti G; Beggs JD
    Genome Res; 2018 Feb; 28(2):203-213. PubMed ID: 29254943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene-specific RNA polymerase II phosphorylation and the CTD code.
    Kim H; Erickson B; Luo W; Seward D; Graber JH; Pollock DD; Megee PC; Bentley DL
    Nat Struct Mol Biol; 2010 Oct; 17(10):1279-86. PubMed ID: 20835241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing.
    Ahn SH; Kim M; Buratowski S
    Mol Cell; 2004 Jan; 13(1):67-76. PubMed ID: 14731395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient RNA polymerase II pause release requires U2 snRNP function.
    Caizzi L; Monteiro-Martins S; Schwalb B; Lysakovskaia K; Schmitzova J; Sawicka A; Chen Y; Lidschreiber M; Cramer P
    Mol Cell; 2021 May; 81(9):1920-1934.e9. PubMed ID: 33689748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Splicing of Nascent RNA Coincides with Intron Exit from RNA Polymerase II.
    Oesterreich FC; Herzel L; Straube K; Hujer K; Howard J; Neugebauer KM
    Cell; 2016 Apr; 165(2):372-381. PubMed ID: 27020755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncoupling yeast intron recognition from transcription with recursive splicing.
    Lopez PJ; Séraphin B
    EMBO Rep; 2000 Oct; 1(4):334-9. PubMed ID: 11269499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Saccharomyces cerevisiae gene CDC40/PRP17 controls cell cycle progression through splicing of the ANC1 gene.
    Dahan O; Kupiec M
    Nucleic Acids Res; 2004; 32(8):2529-40. PubMed ID: 15133121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intron status and 3'-end formation control cotranscriptional export of mRNA.
    Lei EP; Silver PA
    Genes Dev; 2002 Nov; 16(21):2761-6. PubMed ID: 12414728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widespread use of non-productive alternative splice sites in Saccharomyces cerevisiae.
    Kawashima T; Douglass S; Gabunilas J; Pellegrini M; Chanfreau GF
    PLoS Genet; 2014 Apr; 10(4):e1004249. PubMed ID: 24722551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cotranscriptional recruitment of yeast TRAMP complex to intronic sequences promotes optimal pre-mRNA splicing.
    Kong KY; Tang HM; Pan K; Huang Z; Lee TH; Hinnebusch AG; Jin DY; Wong CM
    Nucleic Acids Res; 2014 Jan; 42(1):643-60. PubMed ID: 24097436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional interaction of the Ess1 prolyl isomerase with components of the RNA polymerase II initiation and termination machineries.
    Krishnamurthy S; Ghazy MA; Moore C; Hampsey M
    Mol Cell Biol; 2009 Jun; 29(11):2925-34. PubMed ID: 19332564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The histone variant H2A.Z promotes efficient cotranscriptional splicing in
    Neves LT; Douglass S; Spreafico R; Venkataramanan S; Kress TL; Johnson TL
    Genes Dev; 2017 Apr; 31(7):702-717. PubMed ID: 28446598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling reveals kinetic advantages of co-transcriptional splicing.
    Aitken S; Alexander RD; Beggs JD
    PLoS Comput Biol; 2011 Oct; 7(10):e1002215. PubMed ID: 22022255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate.
    García A; Collin A; Calvo O
    Mol Biol Cell; 2012 Nov; 23(21):4297-312. PubMed ID: 22973055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cotranscriptional splicing of a group I intron is facilitated by the Cbp2 protein.
    Lewin AS; Thomas J; Tirupati HK
    Mol Cell Biol; 1995 Dec; 15(12):6971-8. PubMed ID: 8524264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of single RNA polymerase processing through a single endogenous gene in a living yeast cell.
    Treutlein B; Michaelis J
    Angew Chem Int Ed Engl; 2011 Oct; 50(42):9788-90. PubMed ID: 21793146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.