BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 21095588)

  • 21. RNA-Seq approach for accurate characterization of splicing efficiency of yeast introns.
    Xia X
    Methods; 2020 Apr; 176():25-33. PubMed ID: 30926533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role for gene looping in intron-mediated enhancement of transcription.
    Moabbi AM; Agarwal N; El Kaderi B; Ansari A
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8505-10. PubMed ID: 22586116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide analysis of pre-mRNA splicing: intron features govern the requirement for the second-step factor, Prp17 in Saccharomyces cerevisiae and Schizosaccharomyces pombe.
    Sapra AK; Arava Y; Khandelia P; Vijayraghavan U
    J Biol Chem; 2004 Dec; 279(50):52437-46. PubMed ID: 15452114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid Genome-wide Recruitment of RNA Polymerase II Drives Transcription, Splicing, and Translation Events during T Cell Responses.
    Davari K; Lichti J; Gallus C; Greulich F; Uhlenhaut NH; Heinig M; Friedel CC; Glasmacher E
    Cell Rep; 2017 Apr; 19(3):643-654. PubMed ID: 28423325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcription elongation factor Spt4 mediates loss of phosphorylated RNA polymerase II transcription in response to DNA damage.
    Jansen LE; Belo AI; Hulsker R; Brouwer J
    Nucleic Acids Res; 2002 Aug; 30(16):3532-9. PubMed ID: 12177294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of elongating RNA polymerase II by forkhead transcription factors in yeast.
    Morillon A; O'Sullivan J; Azad A; Proudfoot N; Mellor J
    Science; 2003 Apr; 300(5618):492-5. PubMed ID: 12702877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive RNA Polymerase II Interactomes Reveal Distinct and Varied Roles for Each Phospho-CTD Residue.
    Harlen KM; Trotta KL; Smith EE; Mosaheb MM; Fuchs SM; Churchman LS
    Cell Rep; 2016 Jun; 15(10):2147-2158. PubMed ID: 27239037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prp5-Spt8/Spt3 interaction mediates a reciprocal coupling between splicing and transcription.
    Shao W; Ding Z; Zheng ZZ; Shen JJ; Shen YX; Pu J; Fan YJ; Query CC; Xu YZ
    Nucleic Acids Res; 2020 Jun; 48(11):5799-5813. PubMed ID: 32399566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays.
    Clark TA; Sugnet CW; Ares M
    Science; 2002 May; 296(5569):907-10. PubMed ID: 11988574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Threonine-4 of the budding yeast RNAP II CTD couples transcription with Htz1-mediated chromatin remodeling.
    Rosonina E; Yurko N; Li W; Hoque M; Tian B; Manley JL
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):11924-31. PubMed ID: 25071213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II.
    Morillon A; Karabetsou N; O'Sullivan J; Kent N; Proudfoot N; Mellor J
    Cell; 2003 Nov; 115(4):425-35. PubMed ID: 14622597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II.
    Kim M; Krogan NJ; Vasiljeva L; Rando OJ; Nedea E; Greenblatt JF; Buratowski S
    Nature; 2004 Nov; 432(7016):517-22. PubMed ID: 15565157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells.
    Listerman I; Sapra AK; Neugebauer KM
    Nat Struct Mol Biol; 2006 Sep; 13(9):815-22. PubMed ID: 16921380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of the essential mRNA export factor Yra1p is autoregulated by a splicing-dependent mechanism.
    Preker PJ; Kim KS; Guthrie C
    RNA; 2002 Aug; 8(8):969-80. PubMed ID: 12212852
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Carboxyl-terminal Domain of RNA Polymerase II Is Not Sufficient to Enhance the Efficiency of Pre-mRNA Capping or Splicing in the Context of a Different Polymerase.
    Natalizio BJ; Robson-Dixon ND; Garcia-Blanco MA
    J Biol Chem; 2009 Mar; 284(13):8692-702. PubMed ID: 19176527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adventures in time and space: splicing efficiency and RNA polymerase II elongation rate.
    Moehle EA; Braberg H; Krogan NJ; Guthrie C
    RNA Biol; 2014; 11(4):313-9. PubMed ID: 24717535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo.
    Gu B; Eick D; Bensaude O
    Nucleic Acids Res; 2013 Feb; 41(3):1591-603. PubMed ID: 23275552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. P-TEFb stimulates transcription elongation and pre-mRNA splicing through multilateral mechanisms.
    Lenasi T; Barboric M
    RNA Biol; 2010; 7(2):145-50. PubMed ID: 20305375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein arginine methylation facilitates cotranscriptional recruitment of pre-mRNA splicing factors.
    Chen YC; Milliman EJ; Goulet I; Côté J; Jackson CA; Vollbracht JA; Yu MC
    Mol Cell Biol; 2010 Nov; 30(21):5245-56. PubMed ID: 20823272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of the yeast DExH-box RNA helicase prp22p with the 3' splice site during the second step of nuclear pre-mRNA splicing.
    McPheeters DS; Schwer B; Muhlenkamp P
    Nucleic Acids Res; 2000 Mar; 28(6):1313-21. PubMed ID: 10684925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.