These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21095654)

  • 1. Autonomous assistance navigation for robotic wheelchairs in confined spaces.
    Cheein FA; Carelli R; De la Cruz C; Muller S; Bastos Filho TF
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():503-6. PubMed ID: 21095654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SLAM algorithm applied to robotics assistance for navigation in unknown environments.
    Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R
    J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using machine learning to blend human and robot controls for assisted wheelchair navigation.
    Goil A; Derry M; Argall BD
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650454. PubMed ID: 24187271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Bayesian recursive algorithm to find free-spaces for an intelligent wheelchair.
    Nguyen AV; Su S; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7250-3. PubMed ID: 22256012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic adaptation in the NavChair Assistive Wheelchair Navigation System.
    Simpson RC; Levine SP
    IEEE Trans Rehabil Eng; 1999 Dec; 7(4):452-63. PubMed ID: 10609633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust human machine interface based on head movements applied to assistive robotics.
    Perez E; López N; Orosco E; Soria C; Mut V; Freire-Bastos T
    ScientificWorldJournal; 2013; 2013():589636. PubMed ID: 24453877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and validation of an intelligent wheelchair towards a clinically-functional outcome.
    Boucher P; Atrash A; Kelouwani S; Honoré W; Nguyen H; Villemure J; Routhier F; Cohen P; Demers L; Forget R; Pineau J
    J Neuroeng Rehabil; 2013 Jun; 10(1):58. PubMed ID: 23773851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probabilistic vs linear blending approaches to shared control for wheelchair driving.
    Ezeh C; Trautman P; Devigne L; Bureau V; Babel M; Carlson T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():835-840. PubMed ID: 28813924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next generation autonomous wheelchair control.
    Benson J; Barrett S
    Biomed Sci Instrum; 2005; 41():283-8. PubMed ID: 15850119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.
    Lopes AC; Nunes U; Vaz L; Vaz L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():471-4. PubMed ID: 21095885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intelligent single switch wheelchair navigation.
    Ka HW; Simpson R; Chung Y
    Disabil Rehabil Assist Technol; 2012 Nov; 7(6):501-6. PubMed ID: 22356240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Hephaestus Smart Wheelchair System.
    Simpson RC; Poirot D; Baxter F
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):118-22. PubMed ID: 12236449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CYCLOPS: A mobile robotic platform for testing and validating image processing and autonomous navigation algorithms in support of artificial vision prostheses.
    Fink W; Tarbell MA
    Comput Methods Programs Biomed; 2009 Dec; 96(3):226-33. PubMed ID: 19651459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The NavChair Assistive Wheelchair Navigation System.
    Levine SP; Bell DA; Jaros LA; Simpson RC; Koren Y; Borenstein J
    IEEE Trans Rehabil Eng; 1999 Dec; 7(4):443-51. PubMed ID: 10609632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic wheelchair control interface based on headrest pressure measurement.
    Heitmann J; Köhn C; Stefanov D
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975482. PubMed ID: 22275680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collaborative path planning for a robotic wheelchair.
    Zeng Q; Teo CL; Rebsamen B; Burdet E
    Disabil Rehabil Assist Technol; 2008 Nov; 3(6):315-24. PubMed ID: 19117192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initial results in the development of a guidance system for a powered wheelchair.
    Yoder JD; Baumgartner ET; Skaar SB
    IEEE Trans Rehabil Eng; 1996 Sep; 4(3):143-51. PubMed ID: 8800217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A facial expression controlled wheelchair for people with disabilities.
    Rabhi Y; Mrabet M; Fnaiech F
    Comput Methods Programs Biomed; 2018 Oct; 165():89-105. PubMed ID: 30337084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A.Eye Drive: Gaze-based semi-autonomous wheelchair interface.
    Subramanian M; Songur N; Adjei D; Orlov P; Faisal AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5967-5970. PubMed ID: 31947206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the construction of a skill-based wheelchair navigation profile.
    Urdiales C; Pérez EJ; Peinado G; Fdez-Carmona M; Peula JM; Annicchiarico R; Sandoval F; Caltagirone C
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):917-27. PubMed ID: 23475373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.