These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21095657)

  • 1. Biomechanical conceptual design of a passive transfemoral prosthesis.
    Unal R; Carloni R; Hekman EG; Stramigioli S; Koopman HM
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():515-8. PubMed ID: 21095657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conceptual Design of a Fully Passive Transfemoral Prosthesis to Facilitate Energy-Efficient Gait.
    Unal R; Behrens S; Carloni R; Hekman E; Stramigioli S; Koopman B
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2360-2366. PubMed ID: 30418913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual prototyping of a semi-active transfemoral prosthetic leg.
    Lui ZW; Awad MI; Abouhossein A; Dehghani-Sanij AA; Messenger N
    Proc Inst Mech Eng H; 2015 May; 229(5):350-61. PubMed ID: 25991714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal design and control of an electromechanical transfemoral prosthesis with energy regeneration.
    Rohani F; Richter H; van den Bogert AJ
    PLoS One; 2017; 12(11):e0188266. PubMed ID: 29149213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms.
    Morgenroth DC; Roland M; Pruziner AL; Czerniecki JM
    Clin Biomech (Bristol, Avon); 2018 Jun; 55():65-72. PubMed ID: 29698851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a fully-passive transfemoral prosthesis prototype.
    Behrens SM; Unal R; Hekman EE; Carloni R; Stramigioli S; Koopman HF
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():591-4. PubMed ID: 22254379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis.
    Ingraham KA; Fey NP; Simon AM; Hargrove LJ
    PLoS One; 2016; 11(1):e0147661. PubMed ID: 26807889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical model for encoding joint dynamics: applications to transfemoral prosthesis control.
    McGibbon CA
    J Appl Physiol (1985); 2012 May; 112(9):1600-11. PubMed ID: 22282487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of limb alignment on the gait of above-knee amputees.
    Yang L; Solomonidis SE; Spence WD; Paul JP
    J Biomech; 1991; 24(11):981-97. PubMed ID: 1761584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new modular six-bar linkage trans-femoral prosthesis for walking and squatting.
    Chakraborty JK; Patil KM
    Prosthet Orthot Int; 1994 Aug; 18(2):98-108. PubMed ID: 7991367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VUB-CYBERLEGs CYBATHLON 2016 Beta-Prosthesis: case study in control of an active two degree of freedom transfemoral prosthesis.
    Flynn LL; Geeroms J; van der Hoeven T; Vanderborght B; Lefeber D
    J Neuroeng Rehabil; 2018 Jan; 15(1):3. PubMed ID: 29298695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of a new polycentric above-knee prosthesis with a pneumatic swing phase control.
    Patil KM; Chakraborty JK
    J Biomech; 1991; 24(3-4):223-33. PubMed ID: 2055911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of transfemoral amputees using C-Leg and Power Knee for ascending and descending inclines and steps.
    Wolf EJ; Everding VQ; Linberg AL; Schnall BL; Czerniecki JM; Gambel JM
    J Rehabil Res Dev; 2012; 49(6):831-42. PubMed ID: 23299255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vaulting quantification during level walking of transfemoral amputees.
    Drevelle X; Villa C; Bonnet X; Loiret I; Fodé P; Pillet H
    Clin Biomech (Bristol, Avon); 2014 Jun; 29(6):679-83. PubMed ID: 24835798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of an energy efficient transfemoral prosthesis using lockable parallel springs and electrical energy transfer.
    Heremans F; Ronsse R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1305-1312. PubMed ID: 28814001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in Powered Ankle-Foot Prostheses.
    Chumacero E; Masud AA; Isik D; Shen CL; Chyu MC
    Crit Rev Biomed Eng; 2018; 46(2):93-108. PubMed ID: 30055526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms.
    Struchkov V; Buckley JG
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():164-70. PubMed ID: 26689894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ankle-Knee prosthesis with powered ankle and energy transfer for CYBERLEGs α-prototype.
    Geeroms J; Flynn L; Jimenez-Fabian R; Vanderborght B; Lefeber D
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650352. PubMed ID: 24187171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.