These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 21095661)

  • 1. Thermal injury models for optical treatment of biological tissues: a comparative study.
    Fanjul-Velez F; Ortega-Quijano N; Salas-Garcia I; Arce-Diego JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():532-5. PubMed ID: 21095661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histological and modeling study of skin thermal injury to 2.0 microm laser irradiation.
    Chen B; Thomsen SL; Thomas RJ; Oliver J; Welch AJ
    Lasers Surg Med; 2008 Jul; 40(5):358-70. PubMed ID: 18563778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of laser parameters on the zone of thermal injury produced by laser ablation of biological tissue.
    Venugopalan V; Nishioka NS; Mikić BB
    J Biomech Eng; 1994 Feb; 116(1):62-70. PubMed ID: 8189716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal damage in three-dimensional vivo bio-tissues induced by moving heat sources in laser therapy.
    Ma J; Yang X; Sun Y; Yang J
    Sci Rep; 2019 Jul; 9(1):10987. PubMed ID: 31358827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite-element model predicts thermal damage in cutaneous contact burns.
    Orgill DP; Solari MG; Barlow MS; O'Connor NE
    J Burn Care Rehabil; 1998; 19(3):203-9. PubMed ID: 9622462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of thermal properties and geometrical dimensions on skin burn injuries.
    Jiang SC; Ma N; Li HJ; Zhang XX
    Burns; 2002 Dec; 28(8):713-7. PubMed ID: 12464468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling thermal damage in skin from 2000-nm laser irradiation.
    Chen B; Thomsen SL; Thomas RJ; Welch AJ
    J Biomed Opt; 2006; 11(6):064028. PubMed ID: 17212551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of skin burn injury. Part 1: Numerical modelling.
    Ng EY; Chua LT
    Proc Inst Mech Eng H; 2002; 216(3):157-70. PubMed ID: 12137283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures.
    Oliver JW; Stolarski DJ; Noojin GD; Hodnett HM; Harbert CA; Schuster KJ; Foltz MF; Kumru SS; Cain CP; Finkeldei CJ; Buffington GD; Noojin ID; Thomas RJ
    J Biomed Opt; 2010; 15(6):065008. PubMed ID: 21198172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of pulsed CO2 laser ablation at 10.6 microm and 9.5 microm.
    Payne BP; Nishioka NS; Mikic BB; Venugopalan V
    Lasers Surg Med; 1998; 23(1):1-6. PubMed ID: 9694144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal injury secondary to laparoscopic fiber-optic cables.
    Hindle AK; Brody F; Hopkins V; Rosales G; Gonzalez F; Schwartz A
    Surg Endosc; 2009 Aug; 23(8):1720-3. PubMed ID: 19030930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rationalization of thermal injury quantification methods: application to skin burns.
    Viglianti BL; Dewhirst MW; Abraham JP; Gorman JM; Sparrow EM
    Burns; 2014 Aug; 40(5):896-902. PubMed ID: 24418648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dose-dependent smooth muscle cell proliferation induced by thermal injury with pulsed infrared lasers.
    Douek PC; Correa R; Neville R; Unger EF; Shou M; Banai S; Ferrans VJ; Epstein SE; Leon MB; Bonner RF
    Circulation; 1992 Oct; 86(4):1249-56. PubMed ID: 1394931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature and burn injury prediction of human skin exposed to microwaves: a model analysis.
    Ozen S; Helhel S; Bilgin S
    Radiat Environ Biophys; 2011 Aug; 50(3):483-9. PubMed ID: 21533655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of deviation from focal plane on lesion geometry for ablative fractional photothermolysis.
    Kositratna G; Hibert ML; Jaspan M; Welford D; Manstein D
    Lasers Surg Med; 2016 Jul; 48(5):555-61. PubMed ID: 26842919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of skin burn injury. Part 2: Parametric and sensitivity analysis.
    Ng EY; Chua LT
    Proc Inst Mech Eng H; 2002; 216(3):171-83. PubMed ID: 12137284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction in lateral thermal damage using heat-conducting templates: a comparison of continuous wave and pulsed CO2 lasers.
    Spector N; Spector J; Ellis DL; Reinisch L
    Lasers Surg Med; 2003; 32(2):94-100. PubMed ID: 12561041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subsurface skin renewal by treatment with a 1450-nm laser in combination with dynamic cooling.
    Paithankar DY; Clifford JM; Saleh BA; Ross EV; Hardaway CA; Barnette D
    J Biomed Opt; 2003 Jul; 8(3):545-51. PubMed ID: 12880362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Er:YAG laser skin resurfacing using repetitive long-pulse exposure and cryogen spray cooling: II. Theoretical analysis.
    Majaron B; Verkruysse W; Kelly KM; Nelson JS
    Lasers Surg Med; 2001; 28(2):131-7. PubMed ID: 11241518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling thermal damage of incisions using diamond, copper, and sapphire heat-conducting templates with and without cooling.
    Ellis DL; Kozub J; Reinisch L
    Lasers Surg Med; 2006 Oct; 38(9):814-23. PubMed ID: 16998914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.