These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21095662)

  • 1. Application of Tikhonov and MTSVD methods to unfold experimental X-ray spectra in the radiodiagnostic energy range.
    Querol A; Gallardo S; Rodenas J; Verdu G
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():536-9. PubMed ID: 21095662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parametric study of the X-ray primary spectra obtained with the MTSVD unfolding method.
    Querol A; Gallardo S; Ródenas J; Verdú G
    Appl Radiat Isot; 2011 Aug; 69(8):1112-7. PubMed ID: 21078558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of quality control parameters for an X-ray tube using the Monte Carlo method and unfolding techniques.
    Gallardo S; Ródenas J; Verdú G; Querol A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1367-70. PubMed ID: 19964756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte carlo simulation of the compton scattering technique applied to characterize diagnostic x-ray spectra.
    Gallardo S; Ródenas J; Verdú G
    Med Phys; 2004 Jul; 31(7):2082-90. PubMed ID: 15305461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray simulation with the Monte Carlo code PENELOPE. Application to Quality Control.
    Pozuelo F; Gallardo S; Querol A; Verdú G; Ródenas J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5777-80. PubMed ID: 23367242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncertainty analysis in the simulation of X-ray spectra in the diagnostic range using the MCNP5 code.
    Gallardo S; Querol A; Ródenas J; Verdú G
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():389-92. PubMed ID: 22254330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The spectrum and angular distribution of x rays scattered from a water phantom.
    Cheng CW; Taylor KW; Holloway AF
    Med Phys; 1995 Aug; 22(8):1235-45. PubMed ID: 7476709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of shielding materials in a Compton spectrometer applied to x-ray tube quality control using Monte Carlo simulation.
    Gallardo S; Ródenas J; Verdú G; Villaescusa JI
    Radiat Prot Dosimetry; 2005; 115(1-4):375-9. PubMed ID: 16381749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytic model of energy-absorption response functions in compound X-ray detector materials.
    Yun S; Kim HK; Youn H; Tanguay J; Cunningham IA
    IEEE Trans Med Imaging; 2013 Oct; 32(10):1819-28. PubMed ID: 23744671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectra of clinical CT scanners using a portable Compton spectrometer.
    Duisterwinkel HA; van Abbema JK; van Goethem MJ; Kawachimaru R; Paganini L; van der Graaf ER; Brandenburg S
    Med Phys; 2015 Apr; 42(4):1884-94. PubMed ID: 25832078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unfolding X-ray spectra using a flat panel detector.
    Gallardo S; Juste B; Pozuelo F; Ródenas J; Querol A; Verdú G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2384-7. PubMed ID: 24110205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Measurement of response function of CdTe detector using diagnostic X-ray equipment and evaluation of Monte Carlo simulation code].
    Okino H; Hayashi H; Nakagawa K; Takegami K
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2014 Dec; 70(12):1381-91. PubMed ID: 25672443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of HPGe detector response using MCNP5 for 20-150 keV X-rays.
    Salgado CM; Conti CC; Becker PH
    Appl Radiat Isot; 2006 Jun; 64(6):700-5. PubMed ID: 16427294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of mammography spectra using compton spectrometry techniques.
    Burgos MC; Gallardo S; Puchades V; Verdú G; Ródenas J; Villaescusa JI
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):627-30. PubMed ID: 16604714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: application to pulse-height spectroscopy in a-Se.
    Fang Y; Badal A; Allec N; Karim KS; Badano A
    Med Phys; 2012 Jan; 39(1):308-19. PubMed ID: 22225301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging.
    Nillius P; Klamra W; Sibczynski P; Sharma D; Danielsson M; Badano A
    Med Phys; 2015 Feb; 42(2):600-605. PubMed ID: 28102604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnostic x-ray spectra measurements using a silicon surface barrier detector.
    Pani R; Laitano RF; Pellegrini R
    Phys Med Biol; 1987 Sep; 32(9):1135-49. PubMed ID: 3671498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of radiography applications using x-ray beams emitted by compact accelerators. Part I. Monte Carlo study of the hard x-ray spectrum.
    Marziani M; Taibi A; Di Domenico G; Gambaccini M
    Med Phys; 2009 Oct; 36(10):4683-701. PubMed ID: 19928100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C.
    Ay MR; Shahriari M; Sarkar S; Adib M; Zaidi H
    Phys Med Biol; 2004 Nov; 49(21):4897-917. PubMed ID: 15584526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Compton scattering spectrometer for determining X-ray photon energy spectra.
    Matscheko G; Ribberfors R
    Phys Med Biol; 1987 May; 32(5):577-94. PubMed ID: 3588671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.