BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 21095684)

  • 41. Optimization of a pneumatic balloon tactile display for robot-assisted surgery based on human perception.
    King CH; Culjat MO; Franco ML; Bisley JW; Dutson E; Grundfest WS
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2593-600. PubMed ID: 18990629
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Patient specific surgical simulator for the evaluation of the movability of bimanual robotic arms.
    Moglia A; Turini G; Ferrari V; Ferrari M; Mosca F
    Stud Health Technol Inform; 2011; 163():379-85. PubMed ID: 21335823
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Non-orthogonal tool/flange and robot/world calibration.
    Ernst F; Richter L; Matthäus L; Martens V; Bruder R; Schlaefer A; Schweikard A
    Int J Med Robot; 2012 Dec; 8(4):407-20. PubMed ID: 22508570
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Human voluntary activity integration in the control of a standing-up rehabilitation robot: a simulation study.
    Kamnik R; Bajd T
    Med Eng Phys; 2007 Nov; 29(9):1019-29. PubMed ID: 17098459
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Overview of the vascular interventional surgery robot].
    Li S; Shen J; Yan Y; Chen D
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Mar; 37(2):119-22. PubMed ID: 23777068
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A double-loop structure in the adaptive generalized predictive control algorithm for control of robot end-point contact force.
    Wen S; Zhu J; Li X; Chen S
    ISA Trans; 2014 Sep; 53(5):1603-8. PubMed ID: 24973336
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of control modes of a hand-held robot for laparoscopic surgery.
    Tonet O; Focacci F; Piccigallo M; Cavallo F; Uematsu M; Megali G; Dario P
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):429-36. PubMed ID: 17354919
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An MRI-Guided Telesurgery System Using a Fabry-Perot Interferometry Force Sensor and a Pneumatic Haptic Device.
    Su H; Shang W; Li G; Patel N; Fischer GS
    Ann Biomed Eng; 2017 Aug; 45(8):1917-1928. PubMed ID: 28447178
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of a medical robot system for minimally invasive surgery.
    Feng M; Fu Y; Pan B; Liu C
    Int J Med Robot; 2012 Mar; 8(1):85-96. PubMed ID: 21990214
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Robot-assisted prostate brachytherapy.
    Yu Y; Podder T; Zhang Y; Ng WS; Misic V; Sherman J; Fu L; Fuller D; Messing E; Rubens D; Strang J; Brasacchio R
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):41-9. PubMed ID: 17354872
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanical analysis of end-to-end silk-sutured anastomosis for robot-assisted surgery.
    Liu Y; Wang S; Hu SJ; Qiu W
    Int J Med Robot; 2009 Dec; 5(4):444-51. PubMed ID: 19722292
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery.
    Balicki M; Uneri A; Iordachita I; Handa J; Gehlbach P; Taylor R
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):303-10. PubMed ID: 20879413
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Performance evaluation of haptic hand-controllers in a robot-assisted surgical system.
    Zareinia K; Maddahi Y; Ng C; Sepehri N; Sutherland GR
    Int J Med Robot; 2015 Dec; 11(4):486-501. PubMed ID: 25624185
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback to ensure safety and improve transparency in bimanual haptic interaction.
    Meli L; Pacchierotti C; Prattichizzo D
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1318-27. PubMed ID: 24658255
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Smith predictor-based robot control for ultrasound-guided teleoperated beating-heart surgery.
    Bowthorpe M; Tavakoli M; Becher H; Howe R
    IEEE J Biomed Health Inform; 2014 Jan; 18(1):157-66. PubMed ID: 24403413
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improving robot arm control for safe and robust haptic cooperation in orthopaedic procedures.
    Cruces RA; Wahrburg J
    Int J Med Robot; 2007 Dec; 3(4):316-22. PubMed ID: 17948919
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel 4-DOF surgical instrument with modular joints and 6-Axis Force sensing capability.
    Li K; Pan B; Zhang F; Gao W; Fu Y; Wang S
    Int J Med Robot; 2017 Mar; 13(1):. PubMed ID: 27291158
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An admittance-controlled amplified force tracking scheme for collaborative lumbar puncture surgical robot system.
    Li H; Nie X; Duan D; Li Y; Zhang J; Zhou M; Magid E
    Int J Med Robot; 2022 Oct; 18(5):e2428. PubMed ID: 35649724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.