These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 21095684)

  • 61. The concept and feasibility of EXPERT: intelligent armrest using robotics technology.
    Goto T; Hongo K; Yako T; Hara Y; Okamoto J; Toyoda K; Fujie MG; Iseki H
    Neurosurgery; 2013 Jan; 72 Suppl 1():39-42. PubMed ID: 23254811
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery.
    Varma TR; Eldridge P
    Int J Med Robot; 2006 Jun; 2(2):107-13. PubMed ID: 17520621
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Master and slave transluminal endoscopic robot (MASTER) for natural orifice transluminal endoscopic surgery (NOTES).
    Phee SJ; Low SC; Huynh VA; Kencana AP; Sun ZL; Yang K
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1192-5. PubMed ID: 19963992
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A novel SEA-based haptic force feedback master hand controller for robotic endovascular intervention system.
    Wang K; Mai X; Xu H; Lu Q; Yan W
    Int J Med Robot; 2020 Oct; 16(5):1-10. PubMed ID: 32306455
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A novel computerized surgeon-machine interface for robot-assisted laser phonomicrosurgery.
    Mattos LS; Deshpande N; Barresi G; Guastini L; Peretti G
    Laryngoscope; 2014 Aug; 124(8):1887-94. PubMed ID: 24375385
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Application research of master-slave cranio-maxillofacial surgical robot based on force feedback.
    Xu C; Wang Y; Zhou C; Zhang Z; Xie L; Andersson K; Feng L
    Proc Inst Mech Eng H; 2021 May; 235(5):583-596. PubMed ID: 33645309
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Spatial motion constraints for robot assisted suturing using virtual fixtures.
    Kapoor A; Li M; Taylor RH
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):89-96. PubMed ID: 16685947
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Using simulation to design control strategies for robotic no-scar surgery.
    De Donno A; Nageotte F; Zanne P; Goffin L; de Mathelin M
    Stud Health Technol Inform; 2013; 184():117-21. PubMed ID: 23400142
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Measurement of the robot motor capability of a robot motor system: a Fitts's-law-inspired approach.
    Lin HI; Lee CS
    Sensors (Basel); 2013 Jul; 13(7):8412-30. PubMed ID: 23820745
    [TBL] [Abstract][Full Text] [Related]  

  • 70. EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton.
    Kiguchi K; Imada Y; Liyanage M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3040-3. PubMed ID: 18002635
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [A gearing mechanism with 4 degrees of freedom for robotic applications in medicine].
    Pott P; Weiser P; Scharf HP; Schwarz M
    Biomed Tech (Berl); 2004 Jun; 49(6):177-80. PubMed ID: 15279468
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Position calibration of a 3-DOF hand-controller with hybrid structure.
    Zhu C; Song A
    Rev Sci Instrum; 2017 Sep; 88(9):095002. PubMed ID: 28964204
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Contact Compliance Based Visual Feedback for Tool Alignment in Robot Assisted Bone Drilling.
    Yen PL; Chen YJ
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590895
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Integrating an image-guided robot with intraoperative MRI: a review of the design and construction of neuroArm.
    Sutherland GR; Latour I; Greer AD
    IEEE Eng Med Biol Mag; 2008; 27(3):59-65. PubMed ID: 18519183
    [No Abstract]   [Full Text] [Related]  

  • 76. A force-sensing surgical tool with a proximally located force/torque sensor.
    Schwalb W; Shirinzadeh B; Smith J
    Int J Med Robot; 2017 Mar; 13(1):. PubMed ID: 26919028
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Negating the fulcrum effect in manual laparoscopic surgery: Investigating skill acquisition with a haptic simulator.
    Spiers AJ; Baillie S; Pipe TG; Asimakopolous G
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28544316
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Tool/tissue interaction feedback modalities in robot-assisted lump localization.
    Tavakoli M; Aziminejad A; Patel RV; Moallem M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3854-7. PubMed ID: 17946205
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Review of surgical robotics user interface: what is the best way to control robotic surgery?
    Simorov A; Otte RS; Kopietz CM; Oleynikov D
    Surg Endosc; 2012 Aug; 26(8):2117-25. PubMed ID: 22350236
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The effect of haptic degrees of freedom on task performance in virtual surgical environments.
    Forsslund J; Chan S; Selesnick J; Salisbury K; Silva RG; Blevins NH
    Stud Health Technol Inform; 2013; 184():129-35. PubMed ID: 23400144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.