These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 21095703)
1. Movement decoding from noninvasive neural signals. Contreras-Vidal JL; Bradberry TJ; Agashe H Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2825-8. PubMed ID: 21095703 [TBL] [Abstract][Full Text] [Related]
3. Classification of upper limb center-out reaching tasks by means of EEG-based continuous decoding techniques. Úbeda A; Azorín JM; Chavarriaga R; R Millán JD J Neuroeng Rehabil; 2017 Feb; 14(1):9. PubMed ID: 28143603 [TBL] [Abstract][Full Text] [Related]
4. Decoding center-out hand velocity from MEG signals during visuomotor adaptation. Bradberry TJ; Rong F; Contreras-Vidal JL Neuroimage; 2009 Oct; 47(4):1691-700. PubMed ID: 19539036 [TBL] [Abstract][Full Text] [Related]
5. Decoding hand and cursor kinematics from magnetoencephalographic signals during tool use. Bradberry TJ; Contreras-Vidal JL; Rong F Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5306-9. PubMed ID: 19163915 [TBL] [Abstract][Full Text] [Related]
6. Decoding three-dimensional hand kinematics from electroencephalographic signals. Bradberry TJ; Gentili RJ; Contreras-Vidal JL Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5010-3. PubMed ID: 19965033 [TBL] [Abstract][Full Text] [Related]
7. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals. Engemann DA; Gramfort A Neuroimage; 2015 Mar; 108():328-42. PubMed ID: 25541187 [TBL] [Abstract][Full Text] [Related]
8. Adaptive neural network classifier for decoding MEG signals. Zubarev I; Zetter R; Halme HL; Parkkonen L Neuroimage; 2019 Aug; 197():425-434. PubMed ID: 31059799 [TBL] [Abstract][Full Text] [Related]
9. Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. Combrisson E; Jerbi K J Neurosci Methods; 2015 Jul; 250():126-36. PubMed ID: 25596422 [TBL] [Abstract][Full Text] [Related]
10. Integrated MEG/EEG and fMRI model based on neural masses. Babajani A; Soltanian-Zadeh H IEEE Trans Biomed Eng; 2006 Sep; 53(9):1794-801. PubMed ID: 16941835 [TBL] [Abstract][Full Text] [Related]
11. Distance- and speed-informed kinematics decoding improves M/EEG based upper-limb movement decoder accuracy. Kobler RJ; Sburlea AI; Mondini V; Hirata M; Müller-Putz GR J Neural Eng; 2020 Nov; 17(5):056027. PubMed ID: 33146148 [TBL] [Abstract][Full Text] [Related]
12. Decoding performance for hand movements: EEG vs. MEG. Waldert S; Braun C; Preissl H; Birbaumer N; Aertsen A; Mehring C Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5346-8. PubMed ID: 18003215 [TBL] [Abstract][Full Text] [Related]
13. Model-based neural decoding of reaching movements: a maximum likelihood approach. Kemere C; Shenoy KV; Meng TH IEEE Trans Biomed Eng; 2004 Jun; 51(6):925-32. PubMed ID: 15188860 [TBL] [Abstract][Full Text] [Related]
14. Hyperedge bundling: A practical solution to spurious interactions in MEG/EEG source connectivity analyses. Wang SH; Lobier M; Siebenhühner F; Puoliväli T; Palva S; Palva JM Neuroimage; 2018 Jun; 173():610-622. PubMed ID: 29378318 [TBL] [Abstract][Full Text] [Related]
15. Eye movements explain decodability during perception and cued attention in MEG. Quax SC; Dijkstra N; van Staveren MJ; Bosch SE; van Gerven MAJ Neuroimage; 2019 Jul; 195():444-453. PubMed ID: 30951848 [TBL] [Abstract][Full Text] [Related]
16. Spatiotemporal forward solution of the EEG and MEG using network modeling. Jirsa VK; Jantzen KJ; Fuchs A; Kelso JA IEEE Trans Med Imaging; 2002 May; 21(5):493-504. PubMed ID: 12071620 [TBL] [Abstract][Full Text] [Related]
17. Improved multi-unit decoding at the brain-machine interface using population temporal linear filtering. Herzfeld DJ; Beardsley SA J Neural Eng; 2010 Aug; 7(4):046012. PubMed ID: 20644245 [TBL] [Abstract][Full Text] [Related]
18. A study on decoding models for the reconstruction of hand trajectories from the human magnetoencephalography. Yeom HG; Hong W; Kang DY; Chung CK; Kim JS; Kim SP Biomed Res Int; 2014; 2014():176857. PubMed ID: 25050324 [TBL] [Abstract][Full Text] [Related]
19. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals. Kim YJ; Park SW; Yeom HG; Bang MS; Kim JS; Chung CK; Kim S Biomed Eng Online; 2015 Aug; 14():81. PubMed ID: 26290069 [TBL] [Abstract][Full Text] [Related]
20. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces. Xu K; Wang Y; Wang Y; Wang F; Hao Y; Zhang S; Zhang Q; Chen W; Zheng X J Neural Eng; 2013 Apr; 10(2):026008. PubMed ID: 23428877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]