These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21095738)

  • 21. Fast normalized cross correlation for motion tracking using basis functions.
    Hii AJ; Hann CE; Chase JG; Van Houten EE
    Comput Methods Programs Biomed; 2006 May; 82(2):144-56. PubMed ID: 16581152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silicone breast phantoms for elastographic imaging evaluation.
    Kashif AS; Lotz TF; McGarry MD; Pattison AJ; Chase JG
    Med Phys; 2013 Jun; 40(6):063503. PubMed ID: 23718614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phantom elasticity reconstruction with Digital Image Elasto-Tomography.
    Van Houten EE; Peters A; Chase JG
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1741-54. PubMed ID: 22098874
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Brief Review on Breast Carcinoma and Deliberation on Current Non Invasive Imaging Techniques for Detection.
    Vairavan R; Abdullah O; Retnasamy PB; Sauli Z; Shahimin MM; Retnasamy V
    Curr Med Imaging Rev; 2019; 15(2):85-121. PubMed ID: 31975658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional quantitative microwave imaging of realistic numerical breast phantoms using Huber regularization.
    Bai F; Franchois A; De Zaeytijd J; Pižurica A
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5135-8. PubMed ID: 24110891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis.
    Zhang Y; Chan HP; Sahiner B; Wei J; Goodsitt MM; Hadjiiski LM; Ge J; Zhou C
    Med Phys; 2006 Oct; 33(10):3781-95. PubMed ID: 17089843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling viscous damping in actuated breast tissue to provide diagnostic insight for breast cancer: A proof-of-concept analysis.
    Fitzjohn JL; Zhou C; Chase JG; Ormsby Z; Haggers M
    Med Phys; 2021 Sep; 48(9):4978-4992. PubMed ID: 34174093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Framework for estimating tumour parameters using thermal imaging.
    Umadevi V; Raghavan SV; Jaipurkar S
    Indian J Med Res; 2011 Nov; 134(5):725-31. PubMed ID: 22199114
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Digital optical tomography system for dynamic breast imaging.
    Flexman ML; Khalil MA; Al Abdi R; Kim HK; Fong CJ; Desperito E; Hershman DL; Barbour RL; Hielscher AH
    J Biomed Opt; 2011 Jul; 16(7):076014. PubMed ID: 21806275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional thermoacoustic imaging for early breast cancer detection.
    Ji Z; Lou C; Yang S; Xing D
    Med Phys; 2012 Nov; 39(11):6738-44. PubMed ID: 23127067
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel fast full inversion based breast ultrasound elastography technique.
    Karimi H; Fenster A; Samani A
    Phys Med Biol; 2013 Apr; 58(7):2219-33. PubMed ID: 23475227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-cost quasi-real-time elastography using B-mode ultrasound images.
    Kwon HJ; Lee J
    Biomed Mater Eng; 2014; 24(4):1673-92. PubMed ID: 24948452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A 3-D Region-Growing Motion-Tracking Method for Ultrasound Elasticity Imaging.
    Wang Y; Jiang J; Hall TJ
    Ultrasound Med Biol; 2018 Aug; 44(8):1638-1653. PubMed ID: 29784436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer.
    Giger ML; Karssemeijer N; Schnabel JA
    Annu Rev Biomed Eng; 2013; 15():327-57. PubMed ID: 23683087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Motion estimation using the monogenic signal applied to ultrasound elastography.
    Maltaverne T; Delachartre P; Basarab A
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():33-6. PubMed ID: 21095638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel breast software phantom for biomechanical modeling of elastography.
    Bhatti SN; Sridhar-Keralapura M
    Med Phys; 2012 Apr; 39(4):1748-68. PubMed ID: 22482599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A 3D electrical impedance tomography (EIT) system for breast cancer detection.
    Cherepenin V; Karpov A; Korjenevsky A; Kornienko V; Mazaletskaya A; Mazourov D; Meister D
    Physiol Meas; 2001 Feb; 22(1):9-18. PubMed ID: 11236894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulations and phantom evaluations of magnetic resonance electrical impedance tomography (MREIT) for breast cancer detection.
    Sadleir RJ; Sajib SZ; Kim HJ; Kwon OI; Woo EJ
    J Magn Reson; 2013 May; 230():40-9. PubMed ID: 23435264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface impedance based microwave imaging method for breast cancer screening: contrast-enhanced scenario.
    Güren O; Çayören M; Ergene LT; Akduman I
    Phys Med Biol; 2014 Oct; 59(19):5725-39. PubMed ID: 25198056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of digital breast tomosynthesis reconstruction algorithms using synchrotron radiation in standard geometry.
    Bliznakova K; Kolitsi Z; Speller RD; Horrocks JA; Tromba G; Pallikarakis N
    Med Phys; 2010 Apr; 37(4):1893-903. PubMed ID: 20443511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.