These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21095745)

  • 1. TMS modeling toolbox for realistic simulation.
    Cho YS; Suh HS; Lee WH; Kim TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3113-6. PubMed ID: 21095745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A software toolkit for TMS electric-field modeling with boundary element fast multipole method: an efficient MATLAB implementation.
    Makarov SN; Wartman WA; Daneshzand M; Fujimoto K; Raij T; Nummenmaa A
    J Neural Eng; 2020 Aug; 17(4):046023. PubMed ID: 32235065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative performance of the finite element method and the boundary element fast multipole method for problems mimicking transcranial magnetic stimulation (TMS).
    Htet AT; Saturnino GB; Burnham EH; Noetscher GM; Nummenmaa A; Makarov SN
    J Neural Eng; 2019 Apr; 16(2):024001. PubMed ID: 30605893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D realistic head model simulation based on transcranial magnetic stimulation.
    Yang S; Xu G; Wang L; Chen Y; Wu H; Li Y; Yang Q
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6469-72. PubMed ID: 17959428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling transcranial magnetic stimulation coil with magnetic cores.
    Makaroff SN; Nguyen H; Meng Q; Lu H; Nummenmaa AR; Deng ZD
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36548994
    [No Abstract]   [Full Text] [Related]  

  • 6. A Quasi-Static Boundary Element Approach With Fast Multipole Acceleration for High-Resolution Bioelectromagnetic Models.
    Makarov SN; Noetscher GM; Raij T; Nummenmaa A
    IEEE Trans Biomed Eng; 2018 Dec; 65(12):2675-2683. PubMed ID: 29993385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncertainty quantification in transcranial magnetic stimulation via high-dimensional model representation.
    Gomez LJ; Yücel AC; Hernandez-Garcia L; Taylor SF; Michielssen E
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):361-72. PubMed ID: 25203980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS?
    Thielscher A; Antunes A; Saturnino GB
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():222-5. PubMed ID: 26736240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditions for numerically accurate TMS electric field simulation.
    Gomez LJ; Dannhauer M; Koponen LM; Peterchev AV
    Brain Stimul; 2020; 13(1):157-166. PubMed ID: 31604625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric field simulations for transcranial brain stimulation using FEM: an efficient implementation and error analysis.
    Saturnino GB; Madsen KH; Thielscher A
    J Neural Eng; 2019 Nov; 16(6):066032. PubMed ID: 31487695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-scale modeling toolbox for single neuron and subcellular activity under Transcranial Magnetic Stimulation.
    Shirinpour S; Hananeia N; Rosado J; Tran H; Galanis C; Vlachos A; Jedlicka P; Queisser G; Opitz A
    Brain Stimul; 2021; 14(6):1470-1482. PubMed ID: 34562659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using increased structural detail of the cortex to improve the accuracy of modeling the effects of transcranial magnetic stimulation on neocortical activation.
    Chen M; Mogul DJ
    IEEE Trans Biomed Eng; 2010 May; 57(5):1216-26. PubMed ID: 20142156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time computation of the TMS-induced electric field in a realistic head model.
    Stenroos M; Koponen LM
    Neuroimage; 2019 Dec; 203():116159. PubMed ID: 31494248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FDTD-based Transcranial Magnetic Stimulation model applied to specific neurodegenerative disorders.
    Fanjul-Vélez F; Salas-García I; Ortega-Quijano N; Arce-Diego JL
    Comput Methods Programs Biomed; 2015 Jan; 118(1):34-43. PubMed ID: 25453382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computation of transcranial magnetic stimulation electric fields using self-supervised deep learning.
    Li H; Deng ZD; Oathes D; Fan Y
    Neuroimage; 2022 Dec; 264():119705. PubMed ID: 36280099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D modeling of the total electric field induced by transcranial magnetic stimulation using the boundary element method.
    Salinas FS; Lancaster JL; Fox PT
    Phys Med Biol; 2009 Jun; 54(12):3631-47. PubMed ID: 19458407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved field localization in transcranial magnetic stimulation of the brain with the utilization of a conductive shield plate in the stimulator.
    Kim DH; Georghiou GE; Won C
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):720-5. PubMed ID: 16602579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A semi-automated pipeline for finite element modeling of electric field induced in nonhuman primates by transcranial magnetic stimulation.
    Goswami N; Shen M; Gomez LJ; Dannhauer M; Sommer MA; Peterchev AV
    J Neurosci Methods; 2024 Aug; 408():110176. PubMed ID: 38795980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive human brain stimulation.
    Wagner T; Valero-Cabre A; Pascual-Leone A
    Annu Rev Biomed Eng; 2007; 9():527-65. PubMed ID: 17444810
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.