These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21095774)

  • 1. Bio cooperative robotic platform for motor function recovery of the upper limb after stroke.
    Rodriguez Guerrero C; Fraile Marinero J; Perez Turiel J; Rivera Farina P
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4472-5. PubMed ID: 21095774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke.
    Dovat L; Lambercy O; Gassert R; Maeder T; Milner T; Leong TC; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2008 Dec; 16(6):582-91. PubMed ID: 19144590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot.
    Hu XL; Tong KY; Wei XJ; Rong W; Susanto EA; Ho SK
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1065-74. PubMed ID: 23932795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RUPERT closed loop control design.
    Balasubramanian S; Wei R; He J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3467-70. PubMed ID: 19163455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assistive Control System for Upper Limb Rehabilitation Robot.
    Chen SH; Lien WM; Wang WW; Lee GD; Hsu LC; Lee KW; Lin SY; Lin CH; Fu LC; Lai JS; Luh JJ; Chen WS
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1199-1209. PubMed ID: 26929055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hand function recovery in chronic stroke with HEXORR robotic training: A case series.
    Godfrey SB; Schabowsky CN; Holley RJ; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4485-8. PubMed ID: 21095777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a robotic device for the rehabilitation of severe upper limb paresis in subacute stroke: exploration of patient/robot interactions and the motor recovery process.
    Duret C; Courtial O; Grosmaire AG; Hutin E
    Biomed Res Int; 2015; 2015():482389. PubMed ID: 25821804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proof of concept study investigating the feasibility of combining iPAM robot assisted rehabilitation with functional electrical stimulation to deliver whole arm exercise in stroke survivors.
    O'Connor RJ; Jackson A; Makower SG; Cozens A; Levesley M
    J Med Eng Technol; 2014; 39(7):411-8. PubMed ID: 26414146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual Reality environment assisting post stroke hand rehabilitation: case report.
    Tsoupikova D; Stoykov N; Kamper D; Vick R
    Stud Health Technol Inform; 2013; 184():458-64. PubMed ID: 23400202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.
    Ren Y; Wu YN; Yang CY; Xu T; Harvey RL; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):589-596. PubMed ID: 27337720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A haptic-robotic platform for upper-limb reaching stroke therapy: preliminary design and evaluation results.
    Lam P; Hebert D; Boger J; Lacheray H; Gardner D; Apkarian J; Mihailidis A
    J Neuroeng Rehabil; 2008 May; 5():15. PubMed ID: 18498641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervisory controller design for a robot-assisted reach-to-grasp rehabilitation task.
    Wang F; Sarkar N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4258-61. PubMed ID: 19163653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.
    Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual reality and a haptic master-slave set-up in post-stroke upper-limb rehabilitation.
    Houtsma JA; Van Houten FJ
    Proc Inst Mech Eng H; 2006 Aug; 220(6):715-8. PubMed ID: 16961191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of gestural feedback treatment for upper extremity movement in children with cerebral palsy.
    Wood KC; Lathan CE; Kaufman KR
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):300-5. PubMed ID: 23193461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system.
    Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an interactive upper extremity gestural robotic feedback system: from bench to reality.
    Wood KA; Lathan CE; Kaufman KR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5973-6. PubMed ID: 19964144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Stroke and Cerebral Palsy.
    Susko T; Swaminathan K; Krebs HI
    IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1089-1099. PubMed ID: 26929056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary functional assessment of a multigrasp myoelectric prosthesis.
    Dalley SA; Bennett DA; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4172-5. PubMed ID: 23366847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.