These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 21095780)

  • 1. Modeling the biomechanical constraints on the feedforward control of endpoint stiffness.
    Hu X; Murray WM; Perreault EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4498-501. PubMed ID: 21095780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical constraints on the feedforward regulation of endpoint stiffness.
    Hu X; Murray WM; Perreault EJ
    J Neurophysiol; 2012 Oct; 108(8):2083-91. PubMed ID: 22832565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle short-range stiffness can be used to estimate the endpoint stiffness of the human arm.
    Hu X; Murray WM; Perreault EJ
    J Neurophysiol; 2011 Apr; 105(4):1633-41. PubMed ID: 21289133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of self-selected postures to regulate multi-joint stiffness during unconstrained tasks.
    Trumbower RD; Krutky MA; Yang BS; Perreault EJ
    PLoS One; 2009; 4(5):e5411. PubMed ID: 19412540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voluntary control of static endpoint stiffness during force regulation tasks.
    Perreault EJ; Kirsch RF; Crago PE
    J Neurophysiol; 2002 Jun; 87(6):2808-16. PubMed ID: 12037183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of environmental instabilities on endpoint stiffness during the maintenance of human arm posture.
    Krutky MA; Trumbower RD; Perreault EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5938-41. PubMed ID: 19965062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic simulation of perturbation responses in a closed-loop virtual arm model.
    Du YF; He X; Lan N
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4866-9. PubMed ID: 21096650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of voluntary force generation on the elastic components of endpoint stiffness.
    Perreault EJ; Kirsch RF; Crago PE
    Exp Brain Res; 2001 Dec; 141(3):312-23. PubMed ID: 11715075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reflex modulation is linked to the orientation of arm mechanics relative to the environment.
    Krutky MA; Ravichandran VJ; Trumbower RD; Perreault EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5350-3. PubMed ID: 19163926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impedance control reduces instability that arises from motor noise.
    Selen LP; Franklin DW; Wolpert DM
    J Neurosci; 2009 Oct; 29(40):12606-16. PubMed ID: 19812335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel bioinspired control approaches to increase the stiffness variability in multi-muscle driven joints.
    Annunziata S; Paskarbeit J; Schneider A
    Bioinspir Biomim; 2011 Dec; 6(4):045003. PubMed ID: 22126821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive control of stiffness to stabilize hand position with large loads.
    Franklin DW; Milner TE
    Exp Brain Res; 2003 Sep; 152(2):211-20. PubMed ID: 12845511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals.
    Osu R; Gomi H
    J Neurophysiol; 1999 Apr; 81(4):1458-68. PubMed ID: 10200182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of feedforward and feedback contributions to hand stiffness and variability in multijoint arm control.
    He X; Du YF; Lan N
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):634-47. PubMed ID: 23268385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments.
    Gomi H; Osu R
    J Neurosci; 1998 Nov; 18(21):8965-78. PubMed ID: 9787002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D bipedal model with holonomic constraints for the decoupled optimal controller design of the biomechanical sit-to-stand maneuver.
    Mughal A; Iqbal K
    J Biomech Eng; 2010 Apr; 132(4):041010. PubMed ID: 20387973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts.
    McKay JL; Ting LH
    PLoS Comput Biol; 2012; 8(4):e1002465. PubMed ID: 22511857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel strategies in feedforward adaptation to a position-dependent perturbation.
    Hinder MR; Milner TE
    Exp Brain Res; 2005 Aug; 165(2):239-49. PubMed ID: 15856204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.