These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21095806)

  • 21. Lumbar fusion leads to increases in angular motion and stress across sacroiliac joint: a finite element study.
    Ivanov AA; Kiapour A; Ebraheim NA; Goel V
    Spine (Phila Pa 1976); 2009 Mar; 34(5):E162-9. PubMed ID: 19247155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurement of human lumbar spine ligaments during loaded and unloaded motion.
    Hedtmann A; Steffen R; Methfessel J; Kolditz D; Krämer D; Thols M
    Spine (Phila Pa 1976); 1989 Feb; 14(2):175-85. PubMed ID: 2922638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An inverse kinematics model for post-operative knee. Ligament parameters estimation from knee motion.
    Chen EC; Ellis RE
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):313-20. PubMed ID: 17354905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK; Kim YE; Wang KC
    Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A literature review of biomechanical studies on physiological and pathological sacroiliac joints: Articular surface structure, joint motion, dysfunction and treatments.
    Toyohara R; Ohashi T
    Clin Biomech (Bristol, Avon); 2024 Apr; 114():106233. PubMed ID: 38531152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The extent of ligament injury and its influence on pelvic stability following type II anteroposterior compression pelvic injuries--A computer study to gain insight into open book trauma.
    Böhme J; Lingslebe U; Steinke H; Werner M; Slowik V; Josten C; Hammer N
    J Orthop Res; 2014 Jul; 32(7):873-9. PubMed ID: 24664964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A biomechanical model on muscle forces in the transfer of spinal load to the pelvis and legs.
    Hoek van Dijke GA; Snijders CJ; Stoeckart R; Stam HJ
    J Biomech; 1999 Sep; 32(9):927-33. PubMed ID: 10460129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The superior intracapsular ligament of the sacroiliac joint: presumptive evidence for confirmation of Illi's ligament.
    Freeman MD; Fox D; Richards T
    J Manipulative Physiol Ther; 1990 Sep; 13(7):384-90. PubMed ID: 2212884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physical characteristics of the axial interosseous ligament of the human sacroiliac joint.
    Bechtel R
    Spine J; 2001; 1(4):255-9. PubMed ID: 14588329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Innominate 3D motion modeling: biomechanically interesting, but clinically irrelevant.
    Ridgeway K; Silvernail J
    Man Ther; 2012 Oct; 17(5):e11-2; author reply e13. PubMed ID: 22459603
    [No Abstract]   [Full Text] [Related]  

  • 31. A visco-hyperelastic constitutive model for human spine ligaments.
    Jiang Y; Wang Y; Peng X
    Cell Biochem Biophys; 2015 Mar; 71(2):1147-56. PubMed ID: 25347987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative comparison of ligament formulation and pre-strain in finite element analysis of the human lumbar spine.
    Hortin MS; Bowden AE
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1505-18. PubMed ID: 27007776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional finite element modeling of ligaments: technical aspects.
    Weiss JA; Gardiner JC; Ellis BJ; Lujan TJ; Phatak NS
    Med Eng Phys; 2005 Dec; 27(10):845-61. PubMed ID: 16085446
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Articular contact in a three-dimensional model of the knee.
    Blankevoort L; Kuiper JH; Huiskes R; Grootenboer HJ
    J Biomech; 1991; 24(11):1019-31. PubMed ID: 1761580
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantified kinematics of the injury to the posterior cruciate ligament: a computer-aided design simulation study.
    Karnezis IA; Fragkiadakis EG; Webb JM; Hardy JR
    Clin Biomech (Bristol, Avon); 2001 Jan; 16(1):54-60. PubMed ID: 11114444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Movement between the equine ilium and sacrum: in vivo and in vitro studies.
    Goff LM; Jasiewicz J; Jeffcott LB; Condie P; McGowan TW; McGowan CM
    Equine Vet J Suppl; 2006 Aug; (36):457-61. PubMed ID: 17402466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Are coupled rotations in the lumbar spine largely due to the osseo-ligamentous anatomy?--a modeling study.
    Little JP; de Visser H; Pearcy MJ; Adam CJ
    Comput Methods Biomech Biomed Engin; 2008 Feb; 11(1):95-103. PubMed ID: 17943481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A computational model of postoperative knee kinematics.
    Chen E; Ellis RE; Bryant JT; Rudan JF
    Med Image Anal; 2001 Dec; 5(4):317-30. PubMed ID: 11731309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical implications of lumbar spinal ligament transection.
    Von Forell GA; Bowden AE
    Comput Methods Biomech Biomed Engin; 2014 Nov; 17(15):1685-95. PubMed ID: 23477405
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The iliolumbar ligament: its influence on stability of the sacroiliac joint.
    Pool-Goudzwaard A; Hoek van Dijke G; Mulder P; Spoor C; Snijders C; Stoeckart R
    Clin Biomech (Bristol, Avon); 2003 Feb; 18(2):99-105. PubMed ID: 12550807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.