These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 21095885)

  • 1. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.
    Lopes AC; Nunes U; Vaz L; Vaz L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():471-4. PubMed ID: 21095885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An assisted navigation training framework based on judgment theory using sparse and discrete human-machine interfaces.
    Lopes AC; Nunes U
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4603-6. PubMed ID: 19963849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using machine learning to blend human and robot controls for assisted wheelchair navigation.
    Goil A; Derry M; Argall BD
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650454. PubMed ID: 24187271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust human machine interface based on head movements applied to assistive robotics.
    Perez E; López N; Orosco E; Soria C; Mut V; Freire-Bastos T
    ScientificWorldJournal; 2013; 2013():589636. PubMed ID: 24453877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The NavChair Assistive Wheelchair Navigation System.
    Levine SP; Bell DA; Jaros LA; Simpson RC; Koren Y; Borenstein J
    IEEE Trans Rehabil Eng; 1999 Dec; 7(4):443-51. PubMed ID: 10609632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An EOG-Based Human-Machine Interface for Wheelchair Control.
    Huang Q; He S; Wang Q; Gu Z; Peng N; Li K; Zhang Y; Shao M; Li Y
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):2023-2032. PubMed ID: 28767359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vision based interface system for hands free control of an Intelligent Wheelchair.
    Ju JS; Shin Y; Kim EY
    J Neuroeng Rehabil; 2009 Aug; 6():33. PubMed ID: 19660132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities.
    Wästlund E; Sponseller K; Pettersson O; Bared A
    J Rehabil Res Dev; 2015; 52(7):815-26. PubMed ID: 26744901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A self-paced motor imagery based brain-computer interface for robotic wheelchair control.
    Tsui CS; Gan JQ; Hu H
    Clin EEG Neurosci; 2011 Oct; 42(4):225-9. PubMed ID: 22208119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of semiautonomous navigation assistance system for power wheelchairs with blindfolded nondisabled individuals.
    Sharma V; Simpson R; Lopresti E; Schmeler M
    J Rehabil Res Dev; 2010; 47(9):877-90. PubMed ID: 21174252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Case-based reasoning emulation of persons for wheelchair navigation.
    Peula JM; Urdiales C; Herrero I; Fernandez-Carmona M; Sandoval F
    Artif Intell Med; 2012 Oct; 56(2):109-21. PubMed ID: 23068883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probabilistic vs linear blending approaches to shared control for wheelchair driving.
    Ezeh C; Trautman P; Devigne L; Bureau V; Babel M; Carlson T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():835-840. PubMed ID: 28813924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic adaptation in the NavChair Assistive Wheelchair Navigation System.
    Simpson RC; Levine SP
    IEEE Trans Rehabil Eng; 1999 Dec; 7(4):452-63. PubMed ID: 10609633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skills based evaluation of alternative input methods to command a semi-autonomous electric wheelchair.
    Rojas M; Ponce P; Molina A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4593-4596. PubMed ID: 28269298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geospatial assistive technologies for wheelchair users: a scoping review of usability measures and criteria for mobile user interfaces and their potential applicability.
    Prémont MÉ; Vincent C; Mostafavi MA; Routhier F
    Disabil Rehabil Assist Technol; 2020 Feb; 15(2):119-131. PubMed ID: 30663444
    [No Abstract]   [Full Text] [Related]  

  • 16. A Brain Machine Interface for command based control of a wheelchair using conditioning of oscillatory brain activity.
    Hamad EM; Al-Gharabli SI; Saket MM; Jubran O
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1002-1005. PubMed ID: 29060043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. User evaluation of a collaborative wheelchair system.
    Zeng Q; Burdet E; Teo CL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1956-60. PubMed ID: 19163074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of a Wheelchair in an Indoor Environment Based on a Brain-Computer Interface and Automated Navigation.
    Zhang R; Li Y; Yan Y; Zhang H; Wu S; Yu T; Gu Z
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):128-39. PubMed ID: 26054072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fuzzy-based shared controller for brain-actuated simulated robotic system.
    Liu R; Xue KZ; Wang YX; Yang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7384-7. PubMed ID: 22256045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A navigation system for increasing the autonomy and the security of powered wheelchairs.
    Fioretti S; Leo T; Longhi S
    IEEE Trans Rehabil Eng; 2000 Dec; 8(4):490-8. PubMed ID: 11204040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.