These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21095917)

  • 1. A novel variable stiffness actuator: minimizing the energy requirements for the stiffness regulation.
    Tsagarikis NG; Jafari A; Caldwell DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1275-8. PubMed ID: 21095917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A prototype of a novel energy efficient variable stiffness actuator.
    Visser LC; Carloni R; Klijnstra F; Stramigioli S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3703-6. PubMed ID: 21096859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bi-directional series-parallel elastic actuator and overlap of the actuation layers.
    Furnémont R; Mathijssen G; Verstraten T; Lefeber D; Vanderborght B
    Bioinspir Biomim; 2016 Jan; 11(1):016005. PubMed ID: 26813145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An advanced rehabilitation robotic system for augmenting healthcare.
    Hu J; Lim YJ; Ding Y; Paluska D; Solochek A; Laffery D; Bonato P; Marchessault R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2073-6. PubMed ID: 22254745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel compact compliant actuator design for rehabilitation robots.
    Yu H; Huang S; Thakor NV; Chen G; Toh SL; Sta Cruz M; Ghorbel Y; Zhu C
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650478. PubMed ID: 24187295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Control of a Series-Parallel Elastic Actuator for a Weight-Bearing Exoskeleton Robot.
    Wang T; Zheng T; Zhao S; Sui D; Zhao J; Zhu Y
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. More is not always better: modeling the effects of elastic exoskeleton compliance on underlying ankle muscle-tendon dynamics.
    Robertson BD; Farris DJ; Sawicki GS
    Bioinspir Biomim; 2014 Nov; 9(4):046018. PubMed ID: 25417578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of safe mechanism for surgical robots using equilibrium point control method.
    Park S; Lim H; Kim BS; Song JB
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):570-7. PubMed ID: 17354936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetic analysis and experiments of earthworm-like locomotion with compliant surfaces.
    Zarrouk D; Sharf I; Shoham M
    Bioinspir Biomim; 2016 Feb; 11(1):014001. PubMed ID: 26845111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of robot hand with pneumatic actuator and construct of master-slave system.
    Nishino S; Tsujiuchi N; Koizumi T; Komatsubara H; Kudawara T; Shimizu M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3027-30. PubMed ID: 18002632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Tendon-Driven Soft Actuator with Self-Pumping Property.
    Ren T; Li Y; Xu M; Li Y; Xiong C; Chen Y
    Soft Robot; 2020 Apr; 7(2):130-139. PubMed ID: 31584322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel energy-efficient rotational variable stiffness actuator.
    Rao S; Carloni R; Stramigioli S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8175-8. PubMed ID: 22256239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke.
    Dovat L; Lambercy O; Gassert R; Maeder T; Milner T; Leong TC; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2008 Dec; 16(6):582-91. PubMed ID: 19144590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-DOF robotic exoskeleton interface for hand motion assistance.
    Iqbal J; Tsagarakis NG; Caldwell DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1575-8. PubMed ID: 22254623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft artificial tactile sensors for the measurement of human-robot interaction in the rehabilitation of the lower limb.
    De Rossi SM; Vitiello N; Lenzi T; Ronsse R; Koopman B; Persichetti A; Giovacchini F; Vecchi F; Ijspeert AJ; van der Kooij H; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1279-82. PubMed ID: 21095918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and control of the MINDWALKER exoskeleton.
    Wang S; Wang L; Meijneke C; van Asseldonk E; Hoellinger T; Cheron G; Ivanenko Y; La Scaleia V; Sylos-Labini F; Molinari M; Tamburella F; Pisotta I; Thorsteinsson F; Ilzkovitz M; Gancet J; Nevatia Y; Hauffe R; Zanow F; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):277-86. PubMed ID: 25373109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.
    Kim SH; Shin K; Hashi S; Ishiyama K
    Bioinspir Biomim; 2012 Sep; 7(3):036007. PubMed ID: 22550128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot.
    Park YJ; Huh TM; Park D; Cho KJ
    Bioinspir Biomim; 2014 Sep; 9(3):036002. PubMed ID: 24584214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of a disturbance-rejection controller for robotic-enhanced limb rehabilitation trainings.
    Madoński R; Kordasz M; Sauer P
    ISA Trans; 2014 Jul; 53(4):899-908. PubMed ID: 24168844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elbow training device using the Mechanically Adjustable Stiffness Actuator(MASA).
    Choi J; Son C; Park S; Jung E; Yu D
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3614-3617. PubMed ID: 30441159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.