These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 21095918)
1. Soft artificial tactile sensors for the measurement of human-robot interaction in the rehabilitation of the lower limb. De Rossi SM; Vitiello N; Lenzi T; Ronsse R; Koopman B; Persichetti A; Giovacchini F; Vecchi F; Ijspeert AJ; van der Kooij H; Carrozza MC Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1279-82. PubMed ID: 21095918 [TBL] [Abstract][Full Text] [Related]
2. Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface. De Rossi SM; Vitiello N; Lenzi T; Ronsse R; Koopman B; Persichetti A; Vecchi F; Ijspeert AJ; van der Kooij H; Carrozza MC Sensors (Basel); 2011; 11(1):207-27. PubMed ID: 22346574 [TBL] [Abstract][Full Text] [Related]
3. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. Veneman JF; Kruidhof R; Hekman EE; Ekkelenkamp R; Van Asseldonk EH; van der Kooij H IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):379-86. PubMed ID: 17894270 [TBL] [Abstract][Full Text] [Related]
4. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. Agrawal SK; Banala SK; Fattah A; Sangwan V; Krishnamoorthy V; Scholz JP; Hsu WL IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):410-20. PubMed ID: 17894273 [TBL] [Abstract][Full Text] [Related]
5. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints. Zhang F; Fu Y; Zhang Q; Wang S Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062 [TBL] [Abstract][Full Text] [Related]
6. Assistive Control System for Upper Limb Rehabilitation Robot. Chen SH; Lien WM; Wang WW; Lee GD; Hsu LC; Lee KW; Lin SY; Lin CH; Fu LC; Lai JS; Luh JJ; Chen WS IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1199-1209. PubMed ID: 26929055 [TBL] [Abstract][Full Text] [Related]
7. An advanced rehabilitation robotic system for augmenting healthcare. Hu J; Lim YJ; Ding Y; Paluska D; Solochek A; Laffery D; Bonato P; Marchessault R Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2073-6. PubMed ID: 22254745 [TBL] [Abstract][Full Text] [Related]
8. Assistive acting movement therapy devices with pneumatic rotary-type soft actuators. Wilkening A; Baiden D; Ivlev O Biomed Tech (Berl); 2012 Dec; 57(6):445-56. PubMed ID: 23241570 [TBL] [Abstract][Full Text] [Related]
9. Tandem Stance Avoidance Using Adaptive and Asymmetric Admittance Control for Fall Prevention. Nakagawa S; Hasegawa Y; Fukuda T; Kondo I; Tanimoto M; Di P; Huang J; Huang Q IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):542-50. PubMed ID: 25955991 [TBL] [Abstract][Full Text] [Related]
10. Hiding robot inertia using resonance. Vallery H; Duschau-Wicke A; Riener R Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1271-4. PubMed ID: 21095916 [TBL] [Abstract][Full Text] [Related]
11. Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot. van der Kooij H; Veneman J; Ekkelenkamp R Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():189-93. PubMed ID: 17946801 [TBL] [Abstract][Full Text] [Related]
12. A novel method for automatic treadmill speed adaptation. von Zitzewitz J; Bernhardt M; Riener R IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):401-9. PubMed ID: 17894272 [TBL] [Abstract][Full Text] [Related]
13. Robot-assisted humanized passive rehabilitation training based on online assessment and regulation. Pan L; Song A; Duan S; Xu B Biomed Mater Eng; 2015; 26 Suppl 1():S655-64. PubMed ID: 26406061 [TBL] [Abstract][Full Text] [Related]
15. Rehabilitative Soft Exoskeleton for Rodents. Florez JM; Shah M; Moraud EM; Wurth S; Baud L; Von Zitzewitz J; van den Brand R; Micera S; Courtine G; Paik J IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):107-118. PubMed ID: 28113858 [TBL] [Abstract][Full Text] [Related]
16. [Development of a robotic walking simulator for gait rehabilitation]. Schmidt H; Sorowka D; Hesse S; Bernhardt R Biomed Tech (Berl); 2003 Oct; 48(10):281-6. PubMed ID: 14606269 [TBL] [Abstract][Full Text] [Related]
17. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation. Ren Y; Kang SH; Park HS; Wu YN; Zhang LQ IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):490-9. PubMed ID: 23096119 [TBL] [Abstract][Full Text] [Related]
18. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. Aoyagi D; Ichinose WE; Harkema SJ; Reinkensmeyer DJ; Bobrow JE IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):387-400. PubMed ID: 17894271 [TBL] [Abstract][Full Text] [Related]
19. Gait-Event-Based Synchronization Method for Gait Rehabilitation Robots via a Bioinspired Adaptive Oscillator. Chen G; Qi P; Guo Z; Yu H IEEE Trans Biomed Eng; 2017 Jun; 64(6):1345-1356. PubMed ID: 28113222 [TBL] [Abstract][Full Text] [Related]