These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21095920)

  • 1. On the control of the MIT-skywalker.
    Artemiadis PK; Krebs HI
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1287-91. PubMed ID: 21095920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Stroke and Cerebral Palsy.
    Susko T; Swaminathan K; Krebs HI
    IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1089-1099. PubMed ID: 26929056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot.
    van der Kooij H; Veneman J; Ekkelenkamp R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():189-93. PubMed ID: 17946801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and implementation of robust controllers for a gait trainer.
    Wang FC; Yu CH; Chou TY
    Proc Inst Mech Eng H; 2009 Aug; 223(6):687-96. PubMed ID: 19743635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Development of a robotic walking simulator for gait rehabilitation].
    Schmidt H; Sorowka D; Hesse S; Bernhardt R
    Biomed Tech (Berl); 2003 Oct; 48(10):281-6. PubMed ID: 14606269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation.
    Veneman JF; Kruidhof R; Hekman EE; Ekkelenkamp R; Van Asseldonk EH; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):379-86. PubMed ID: 17894270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of stair ascent and descent with a powered transfemoral prosthesis.
    Lawson BE; Varol HA; Huff A; Erdemir E; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):466-73. PubMed ID: 23096120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury.
    Aoyagi D; Ichinose WE; Harkema SJ; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):387-400. PubMed ID: 17894271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic synchronization of functional electrical stimulation and robotic assisted treadmill training.
    Dohring ME; Daly JJ
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):310-3. PubMed ID: 18586610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel mechatronic body weight support system.
    Frey M; Colombo G; Vaglio M; Bucher R; Jörg M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):311-21. PubMed ID: 17009491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and simulation of a pneumatic, stored-energy, hybrid orthosis for gait restoration.
    Durfee WK; Rivard A
    J Biomech Eng; 2005 Nov; 127(6):1014-9. PubMed ID: 16438242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the Treadport for gait rehabilitation of spinal cord injury.
    Hejrati B; Hull D; Black J; Abbott JJ; Hollerbach JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4553-8. PubMed ID: 23366941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.
    Bharadwaj K; Sugar TG; Koeneman JB; Koeneman EJ
    J Biomech Eng; 2005 Nov; 127(6):1009-13. PubMed ID: 16438241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Robotic assisted treadmill therapy in children with cerebral palsy].
    Borggräfe I; Meyer-Heim A; Heinen F
    MMW Fortschr Med; 2009 Oct; 151 Suppl 3():123-6. PubMed ID: 20623939
    [No Abstract]   [Full Text] [Related]  

  • 15. Development of an interactive upper extremity gestural robotic feedback system: from bench to reality.
    Wood KA; Lathan CE; Kaufman KR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5973-6. PubMed ID: 19964144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel method for automatic treadmill speed adaptation.
    von Zitzewitz J; Bernhardt M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):401-9. PubMed ID: 17894272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation.
    Park YL; Chen BR; Pérez-Arancibia NO; Young D; Stirling L; Wood RJ; Goldfield EC; Nagpal R
    Bioinspir Biomim; 2014 Mar; 9(1):016007. PubMed ID: 24434598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MotionTherapy@Home - First results of a clinical study with a novel robotic device for automated locomotion therapy at home.
    Rupp R; Plewa H; Schuld C; Gerner HJ; Hofer EP; Knestel M
    Biomed Tech (Berl); 2011 Feb; 56(1):11-21. PubMed ID: 21080894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initial biomechanical evaluation of wearable tactile feedback system for gait rehabilitation in peripheral neuropathy.
    McKinney Z; Heberer K; Fowler E; Greenberg M; Nowroozi B; Grundfest W
    Stud Health Technol Inform; 2014; 196():271-7. PubMed ID: 24732521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of walking performance in robot-assisted gait training: a novel approach based on empirical data.
    Banz R; Riener R; Lünenburger L; Bolliger M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1977-80. PubMed ID: 19163079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.