These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 21095947)

  • 1. A continuum model of the retinal network and its response to electrical stimulation.
    Yin S; Lovell NH; Suaning GJ; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2077-80. PubMed ID: 21095947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A continuum model of retinal electrical stimulation.
    Joarder SA; Abramian M; Suaning GJ; Lovell NH; Dokos S
    J Neural Eng; 2011 Dec; 8(6):066006. PubMed ID: 22027346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element bidomain model of epiretinal stimulation.
    Joarder SA; Dokos S; Suaning GJ; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1132-5. PubMed ID: 18002161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo electrical stimulation of rabbit retina: effect of stimulus duration and electrical field orientation.
    Shah HA; Montezuma SR; Rizzo JF
    Exp Eye Res; 2006 Aug; 83(2):247-54. PubMed ID: 16750527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of retinal ganglion cells following epiretinal electrical stimulation with hexagonally arranged bipolar electrodes.
    Abramian M; Lovell NH; Morley JW; Suaning GJ; Dokos S
    J Neural Eng; 2011 Jun; 8(3):035004. PubMed ID: 21593545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bidomain model of epiretinal stimulation.
    Dokos S; Suaning GJ; Lovell NH
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):137-46. PubMed ID: 16003891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multi-Domain Continuum Model of Electrical Stimulation of Healthy and Degenerate Retina.
    Alqahtani A; Abed AA; Anderson EE; Lovell NH; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():6117-6120. PubMed ID: 30441730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sites of neuronal excitation by epiretinal electrical stimulation.
    Schiefer MA; Grill WM
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):5-13. PubMed ID: 16562626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How the retinal network reacts to epiretinal stimulation to form the prosthetic visual input to the cortex.
    Cottaris NP; Elfar SD
    J Neural Eng; 2005 Mar; 2(1):S74-90. PubMed ID: 15876658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical receptive fields of retinal ganglion cells: Influence of presynaptic neurons.
    Maturana MI; Apollo NV; Garrett DJ; Kameneva T; Cloherty SL; Grayden DB; Burkitt AN; Ibbotson MR; Meffin H
    PLoS Comput Biol; 2018 Feb; 14(2):e1005997. PubMed ID: 29432411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating electrical stimulation of degenerative retinal ganglion cells with bi-phasic pulse trains.
    Kameneva T; Grayden DB; Meffin H; Burkitt AN
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7103-6. PubMed ID: 22255975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of cortical responses to simultaneous electrical stimulation of the retina.
    Halupka KJ; Shivdasani MN; Cloherty SL; Grayden DB; Wong YT; Burkitt AN; Meffin H
    J Neural Eng; 2017 Feb; 14(1):016006. PubMed ID: 27900949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical stimulation of retinal neurons in epiretinal and subretinal configuration using a multicapacitor array.
    Eickenscheidt M; Jenkner M; Thewes R; Fromherz P; Zeck G
    J Neurophysiol; 2012 May; 107(10):2742-55. PubMed ID: 22357789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convolution based method for calculating inputs from dendritic fields in a continuum model of the retina.
    Al Abed A; Yin S; Suaning GJ; Lovell NH; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():215-8. PubMed ID: 23365869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operational challenges of retinal prostheses.
    Schmid EW; Fink W; Wilke R
    Med Eng Phys; 2014 Dec; 36(12):1644-55. PubMed ID: 25443535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biophysical basis of the linear electrical receptive fields of retinal ganglion cells.
    Esler TB; Maturana MI; Kerr RR; Grayden DB; Burkitt AN; Meffin H
    J Neural Eng; 2018 Oct; 15(5):055001. PubMed ID: 29889051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interphase gap decreases electrical stimulation threshold of retinal ganglion cells.
    Weitz AC; Behrend MR; Humayun MS; Chow RH; Weiland JD
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6725-8. PubMed ID: 22255882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit.
    Yamauchi Y; Franco LM; Jackson DJ; Naber JF; Ziv RO; Rizzo JF; Kaplan HJ; Enzmann V
    J Neural Eng; 2005 Mar; 2(1):S48-56. PubMed ID: 15876654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of starburst amacrine cells to prosthetic stimulation of the retina.
    Tsai D; Morley JW; Suaning GJ; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1053-6. PubMed ID: 22254494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-based analysis of multiple electrode array stimulation for epiretinal visual prostheses.
    Mueller JK; Grill WM
    J Neural Eng; 2013 Jun; 10(3):036002. PubMed ID: 23548495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.