These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 21095947)

  • 41. Minimizing activation of overlying axons with epiretinal stimulation: The role of fiber orientation and electrode configuration.
    Esler TB; Kerr RR; Tahayori B; Grayden DB; Meffin H; Burkitt AN
    PLoS One; 2018; 13(3):e0193598. PubMed ID: 29494655
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Presynaptic effects of group III metabotropic glutamate receptors on excitatory synaptic transmission in the retina.
    Higgs MH; Romano C; Lukasiewicz PD
    Neuroscience; 2002; 115(1):163-72. PubMed ID: 12401331
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simulations to study spatial extent of stimulation and effect of electrode-tissue gap in subretinal implants.
    Kasi H; Bertsch A; Guyomard JL; Kolomiets B; Picaud S; Pelizzone M; Renaud P
    Med Eng Phys; 2011 Jul; 33(6):755-63. PubMed ID: 21354850
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The relationship between retinal damage and current intensity in a pre-clinical suprachoroidal-transretinal stimulation model using a laser-formed microporous electrode.
    Kanda H; Nakano Y; Terasawa Y; Morimoto T; Fujikado T
    J Neural Eng; 2017 Oct; 14(5):056013. PubMed ID: 28675151
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Responses of ganglion cells to repetitive electrical stimulation of the retina.
    Jensen RJ; Rizzo JF
    J Neural Eng; 2007 Mar; 4(1):S1-6. PubMed ID: 17325407
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficacy of electrical stimulation of retinal ganglion cells with temporal patterns resembling light-evoked spike trains.
    Wong RC; Garrett DJ; Grayden DB; Ibbotson MR; Cloherty SL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1707-10. PubMed ID: 25570304
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatially restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar electrode return configuration.
    Habib AG; Cameron MA; Suaning GJ; Lovell NH; Morley JW
    J Neural Eng; 2013 Jun; 10(3):036013. PubMed ID: 23612906
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of high-level pulse train stimulation on retinal function.
    Cohen ED
    J Neural Eng; 2009 Jun; 6(3):035005. PubMed ID: 19458404
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation.
    Fried SI; Hsueh HA; Werblin FS
    J Neurophysiol; 2006 Feb; 95(2):970-8. PubMed ID: 16236780
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina.
    Murphy-Baum BL; Taylor WR
    J Neurosci; 2015 Sep; 35(39):13336-50. PubMed ID: 26424882
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of electrically-evoked ganglion cell responses in normal and degenerate retina.
    Ye JH; Kim KH; Goo YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2465-8. PubMed ID: 19163202
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tunable retina encoders for retina implants: why and how.
    Eckmiller R; Neumann D; Baruth O
    J Neural Eng; 2005 Mar; 2(1):S91-S104. PubMed ID: 15876659
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Time-varying pulse trains limit retinal desensitization caused by continuous electrical stimulation.
    Davuluri NS; Weiland JD
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():414-7. PubMed ID: 25569984
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Responses of rabbit retinal ganglion cells to electrical stimulation with an epiretinal electrode.
    Jensen RJ; Ziv OR; Rizzo JF
    J Neural Eng; 2005 Mar; 2(1):S16-21. PubMed ID: 15876650
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Monopolar vs. bipolar subretinal stimulation-an in vitro study.
    Gerhardt M; Groeger G; Maccarthy N
    J Neurosci Methods; 2011 Jul; 199(1):26-34. PubMed ID: 21557968
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evoked cortical potentials after electrical stimulation of the inner retina in rabbits.
    Walter P; Heimann K
    Graefes Arch Clin Exp Ophthalmol; 2000 Apr; 238(4):315-8. PubMed ID: 10853930
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A continuum model of electrical stimulation of multi-compartmental retinal ganglion cells.
    Alqahtani A; Al Abed A; Tianruo Guo ; Lovell NH; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2716-2719. PubMed ID: 29060460
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrical Stimulation of the Retina to Produce Artificial Vision.
    Weiland JD; Walston ST; Humayun MS
    Annu Rev Vis Sci; 2016 Oct; 2():273-294. PubMed ID: 28532361
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Spatial Extent of Epiretinal Electrical Stimulation in the Healthy Mouse Retina.
    Hosseinzadeh Z; Jalligampala A; Zrenner E; Rathbun DL
    Neurosignals; 2017; 25(1):15-25. PubMed ID: 28743131
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A time domain finite element model of extracellular neural stimulation predicts that non-rectangular stimulus waveforms may offer safety benefits.
    Cantrell DR; Troy JB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2768-71. PubMed ID: 19163279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.