These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21095987)

  • 1. Towards a Switched-Capacitor based Stimulator for efficient deep-brain stimulation.
    Vidal J; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2927-30. PubMed ID: 21095987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.
    Hsu WY; Schmid A
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):878-888. PubMed ID: 28715337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A linearized current stimulator for deep brain stimulation.
    Shen DL; Chu YJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6485-8. PubMed ID: 21096724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A wireless implantable switched-capacitor based optogenetic stimulating system.
    Lee HM; Kwon KY; Li W; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():878-81. PubMed ID: 25570099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 16-Channel biphasic current-mode programmable charge balanced neural stimulation.
    Li X; Zhong S; Morizio J
    Biomed Eng Online; 2017 Aug; 16(1):104. PubMed ID: 28806960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A charge-metering method for voltage-mode neural stimulation.
    Luan S; Constandinou TG
    J Neurosci Methods; 2014 Mar; 224():39-47. PubMed ID: 24360970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stimulator for functional activation of denervated muscles.
    Hofer C; Mayr W; Stöhr H; Unger E; Kern H
    Artif Organs; 2002 Mar; 26(3):276-9. PubMed ID: 11940032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multichannel High-Frequency Power-Isolated Neural Stimulator With Crosstalk Reduction.
    Jiang D; Demosthenous A
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):940-953. PubMed ID: 29993559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis.
    Williams I; Constandinou T
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):129-39. PubMed ID: 23853295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo.
    Wei XF; Grill WM
    J Neural Eng; 2009 Aug; 6(4):046008. PubMed ID: 19587394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tripolar current-steering stimulator ASIC for field shaping in deep brain stimulation.
    Valente V; Demosthenous A; Bayford R
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):197-207. PubMed ID: 23853142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Low-Cost, Wireless, Multi-Channel Deep Brain Stimulation System for Rodents.
    Tala F; Leiber J; Fisher H; Spandana Muppaneni N; Johnson BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7526-7529. PubMed ID: 34892833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active books: the design of an implantable stimulator that minimizes cable count using integrated circuits very close to electrodes.
    Liu X; Demosthenous A; Vanhoestenberghe A; Jiang D; Donaldson N
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):216-27. PubMed ID: 23853144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A programmable system of functional electrical stimulation (FES).
    Velloso JB; Souza MN
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2234-7. PubMed ID: 18002435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fully Integrated, Power-Efficient, 0.07-2.08 mA, High-Voltage Neural Stimulator in a Standard CMOS Process.
    Palomeque-Mangut D; Rodríguez-Vázquez Á; Delgado-Restituto M
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A zero-voltage switching technique for minimizing the current-source power of implanted stimulators.
    Çilingiroğlu U; İpek S
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):469-79. PubMed ID: 23893206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-impedance characterization technique with implantable neural stimulator using biphasic current stimulus.
    Lo YK; Chang CW; Liu W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():474-7. PubMed ID: 25569999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation Efficiency With Decaying Exponential Waveforms in a Wirelessly Powered Switched-Capacitor Discharge Stimulation System.
    Lee HM; Howell B; Grill WM; Ghovanloo M
    IEEE Trans Biomed Eng; 2018 May; 65(5):1095-1106. PubMed ID: 28829301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary experimental study on safety of deep brain stimulation in RF electromagnetic field.
    Jun X; Luming L; Hongwei H
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3091-4. PubMed ID: 19963563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A programmable high-voltage compliance neural stimulator for deep brain stimulation in vivo.
    Gong CS; Lai HY; Huang SH; Lo YC; Lee N; Chen PY; Tu PH; Yang CY; Lin JC; Chen YY
    Sensors (Basel); 2015 May; 15(6):12700-19. PubMed ID: 26029954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.