BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 21095989)

  • 21. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording.
    Lee J; Ozden I; Song YK; Nurmikko AV
    Nat Methods; 2015 Dec; 12(12):1157-62. PubMed ID: 26457862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic and optical targeting of neural circuits and behavior--zebrafish in the spotlight.
    Baier H; Scott EK
    Curr Opin Neurobiol; 2009 Oct; 19(5):553-60. PubMed ID: 19781935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High fidelity optogenetic control of individual prefrontal cortical pyramidal neurons in vivo.
    Nakamura S; Baratta MV; Pomrenze MB; Dolzani SD; Cooper DC
    F1000Res; 2012; 1():7. PubMed ID: 24555016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational models of optogenetic tools for controlling neural circuits with light.
    Nikolic K; Jarvis S; Grossman N; Schultz S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5934-7. PubMed ID: 24111090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optogenetic manipulation of neural circuits and behavior in Drosophila larvae.
    Honjo K; Hwang RY; Tracey WD
    Nat Protoc; 2012 Jul; 7(8):1470-8. PubMed ID: 22790083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain.
    Han X; Qian X; Bernstein JG; Zhou HH; Franzesi GT; Stern P; Bronson RT; Graybiel AM; Desimone R; Boyden ES
    Neuron; 2009 Apr; 62(2):191-8. PubMed ID: 19409264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping Anatomy to Behavior in Thy1:18 ChR2-YFP Transgenic Mice Using Optogenetics.
    Fenno LE; Gunaydin LA; Deisseroth K
    Cold Spring Harb Protoc; 2015 Jun; 2015(6):537-48. PubMed ID: 26034299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical control of zebrafish behavior with halorhodopsin.
    Arrenberg AB; Del Bene F; Baier H
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17968-73. PubMed ID: 19805086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy.
    Hayashi Y; Tagawa Y; Yawata S; Nakanishi S; Funabiki K
    Eur J Neurosci; 2012 Sep; 36(6):2722-32. PubMed ID: 22780218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optogenetic tools for modulating and probing the epileptic network.
    Zhao M; Alleva R; Ma H; Daniel AG; Schwartz TH
    Epilepsy Res; 2015 Oct; 116():15-26. PubMed ID: 26354163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Millisecond-timescale, genetically targeted optical control of neural activity.
    Boyden ES; Zhang F; Bamberg E; Nagel G; Deisseroth K
    Nat Neurosci; 2005 Sep; 8(9):1263-8. PubMed ID: 16116447
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of low-power, high-frequency and temporally precise optogenetic inhibition of spiking in NpHR, eNpHR3.0 and Jaws-expressing neurons.
    Bansal H; Gupta N; Roy S
    Biomed Phys Eng Express; 2020 May; 6(4):045011. PubMed ID: 33444272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fiber-coupled light-emitting diode for localized photostimulation of neurons expressing channelrhodopsin-2.
    Campagnola L; Wang H; Zylka MJ
    J Neurosci Methods; 2008 Mar; 169(1):27-33. PubMed ID: 18187202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cardiac optogenetics.
    Abilez OJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1386-9. PubMed ID: 23366158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cortical mapping of the optically evoked responses in channelrhodopsin-2 mouse model.
    Kim GB; Cho JR; Shin HS; Choi JH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6769-72. PubMed ID: 22255892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Development of An Implantable Optrode for Optogenetic Stimulation].
    Yue S; Yuan M; Zhang Y; Wang X; Wang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):337-42. PubMed ID: 29708670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri.
    Zhang F; Prigge M; Beyrière F; Tsunoda SP; Mattis J; Yizhar O; Hegemann P; Deisseroth K
    Nat Neurosci; 2008 Jun; 11(6):631-3. PubMed ID: 18432196
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The treatment of neurological diseases under a new light: the importance of optogenetics.
    Kokaia M; Sørensen AT
    Drugs Today (Barc); 2011 Jan; 47(1):53-62. PubMed ID: 21373649
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An integrated multi-electrode-optrode array for in vitro optogenetics.
    Welkenhuysen M; Hoffman L; Luo Z; De Proft A; Van den Haute C; Baekelandt V; Debyser Z; Gielen G; Puers R; Braeken D
    Sci Rep; 2016 Feb; 6():20353. PubMed ID: 26832455
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.