These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21095989)

  • 61. Multi-wavelength light emitting diode-based disposable optrode array for in vivo optogenetic modulation.
    Jeon S; Kim JH; Lee H; Kim YK; Jun SB; Lee SH; Ji CH
    J Biophotonics; 2019 May; 12(5):e201800343. PubMed ID: 30588762
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Microbial Proteins as Novel Industrial Biotechnology Hosts to Treat Epilepsy.
    Amtul Z; Aziz AA
    Mol Neurobiol; 2017 Dec; 54(10):8211-8224. PubMed ID: 27905012
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Simultaneous multi-site recordings of neural activity with an inline multi-electrode array and optical measurement in rat hippocampal slices.
    Tominaga T; Tominaga Y; Ichikawa M
    Pflugers Arch; 2001 Nov; 443(2):317-22. PubMed ID: 11713660
    [TBL] [Abstract][Full Text] [Related]  

  • 65. All-optical electrophysiology in behaving animals.
    Vogt N
    Nat Methods; 2015 Feb; 12(2):101. PubMed ID: 25798468
    [No Abstract]   [Full Text] [Related]  

  • 66. Dcf1 Improves Behavior Deficit in Drosophila and Mice Caused by Optogenetic Suppression.
    Liu Q; Gan L; Ni J; Chen Y; Chen Y; Huang Z; Huang X; Wen T
    J Cell Biochem; 2017 Dec; 118(12):4210-4215. PubMed ID: 28401598
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals.
    Michon F; Aarts A; Holzhammer T; Ruther P; Borghs G; McNaughton B; Kloosterman F
    J Neural Eng; 2016 Aug; 13(4):046018. PubMed ID: 27351591
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optogenetic Modulation of Locomotor Activity on Free-Behaving Rats.
    Xu K; Zhang J; Guo S; Zheng X
    Methods Mol Biol; 2016; 1408():195-206. PubMed ID: 26965124
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Development of a microfluidic platform with integrated power splitting waveguides for optogenetic neural cell stimulation.
    Feng H; Shu W; Chen X; Zhang Y; Lu Y; Wang L; Chen Y
    Biomed Microdevices; 2015 Oct; 17(5):101. PubMed ID: 26371060
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Towards a large-scale recording system: demonstration of polymer-based penetrating array for chronic neural recording.
    Tooker A; Liu D; Anderson EB; Felix S; Shah KG; Lee KY; Chung JE; Pannu S; Frank L; Tolosa V
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6830-3. PubMed ID: 25571565
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Optogenetic LED array for perturbing cardiac electrophysiology.
    Abilez OJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1619-22. PubMed ID: 24110013
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution.
    Han X; Boyden ES
    PLoS One; 2007 Mar; 2(3):e299. PubMed ID: 17375185
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Strategies for optical control and simultaneous electrical readout of extended cortical circuits.
    Ledochowitsch P; Yazdan-Shahmorad A; Bouchard KE; Diaz-Botia C; Hanson TL; He JW; Seybold BA; Olivero E; Phillips EA; Blanche TJ; Schreiner CE; Hasenstaub A; Chang EF; Sabes PN; Maharbiz MM
    J Neurosci Methods; 2015 Dec; 256():220-31. PubMed ID: 26296286
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving optrode-neural tissue interface in optogenetics.
    Lu Y; Li Y; Pan J; Wei P; Liu N; Wu B; Cheng J; Lu C; Wang L
    Biomaterials; 2012 Jan; 33(2):378-94. PubMed ID: 22018384
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Optogenetics meets optical wavefront shaping.
    Shoham S
    Nat Methods; 2010 Oct; 7(10):798-9. PubMed ID: 20885441
    [No Abstract]   [Full Text] [Related]  

  • 76. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant.
    Hight AE; Kozin ED; Darrow K; Lehmann A; Boyden E; Brown MC; Lee DJ
    Hear Res; 2015 Apr; 322():235-41. PubMed ID: 25598479
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A polymer-based neural microimplant for optogenetic applications: design and first in vivo study.
    Rubehn B; Wolff SB; Tovote P; Lüthi A; Stieglitz T
    Lab Chip; 2013 Feb; 13(4):579-88. PubMed ID: 23306183
    [TBL] [Abstract][Full Text] [Related]  

  • 78. OptoZIF Drive: a 3D printed implant and assembly tool package for neural recording and optical stimulation in freely moving mice.
    Freedman DS; Schroeder JB; Telian GI; Zhang Z; Sunil S; Ritt JT
    J Neural Eng; 2016 Dec; 13(6):066013. PubMed ID: 27762238
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A comprehensive concept of optogenetics.
    Dugué GP; Akemann W; Knöpfel T
    Prog Brain Res; 2012; 196():1-28. PubMed ID: 22341318
    [TBL] [Abstract][Full Text] [Related]  

  • 80. All-Optical Electrophysiology for Disease Modeling and Pharmacological Characterization of Neurons.
    Werley CA; Brookings T; Upadhyay H; Williams LA; McManus OB; Dempsey GT
    Curr Protoc Pharmacol; 2017 Sep; 78():11.20.1-11.20.24. PubMed ID: 28892145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.