These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21096015)

  • 1. An alpha-stable model for ultrasound speckle statistics in skin.
    Pereyra MA; Batatia H
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4715-8. PubMed ID: 21096015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images.
    Tao Z; Tagare HD; Beaty JD
    IEEE Trans Med Imaging; 2006 Nov; 25(11):1483-91. PubMed ID: 17117777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Third harmonic transmit phasing for SNR improvement in tissue harmonic imaging with Golay-encoded excitation.
    Shen CC; Shi TY
    Ultrasonics; 2011 Jul; 51(5):554-60. PubMed ID: 21256530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rayleigh-maximum-likelihood filtering for speckle reduction of ultrasound images.
    Aysal TC; Barner KE
    IEEE Trans Med Imaging; 2007 May; 26(5):712-27. PubMed ID: 17518065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximum likelihood segmentation of ultrasound images with Rayleigh distribution.
    Sarti A; Corsi C; Mazzini E; Lamberti C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jun; 52(6):947-60. PubMed ID: 16118976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo estimation of flexor digitorum superficialis tendon displacement with speckle tracking on 2-D ultrasound images using Laplacian, Gaussian and Rayleigh techniques.
    Stegman KJ; Djurickovic S; Dechev N
    Ultrasound Med Biol; 2014 Mar; 40(3):568-82. PubMed ID: 24342915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A maximum likelihood approach to diffeomorphic speckle tracking for 3D strain estimation in echocardiography.
    Curiale AH; Vegas-Sánchez-Ferrero G; Bosch JG; Aja-Fernández S
    Med Image Anal; 2015 Aug; 24(1):90-105. PubMed ID: 26084033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probabilistic inverse problem to characterize tissue-equivalent material mechanical properties.
    Bochud N; Rus G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1443-56. PubMed ID: 22828840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of ultrasound speckle image velocimetry using image enhancement techniques.
    Yeom E; Nam KH; Paeng DG; Lee SJ
    Ultrasonics; 2014 Jan; 54(1):205-16. PubMed ID: 23725769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On feature motion decorrelation in ultrasound speckle tracking.
    Liang T; Yung L; Yu W
    IEEE Trans Med Imaging; 2013 Feb; 32(2):435-48. PubMed ID: 23204278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D ultrasonic elastography with lateral displacement estimation using statistics.
    Zhang Z; Liu H; Cheng Y
    Biomed Mater Eng; 2014; 24(6):2783-91. PubMed ID: 25226983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of the compound probability density function in ultrasonic tissue characterization.
    Shankar PM
    Phys Med Biol; 2004 Mar; 49(6):1007-15. PubMed ID: 15104323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoacoustic tomography extracted from speckle noise in acoustically inhomogeneous tissue.
    Wu D; Tao C; Liu X
    Opt Express; 2013 Jul; 21(15):18061-7. PubMed ID: 23938677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impedance estimation of soft tissue using ultrasound signal.
    Fukuda O; Tsubai M; Ueno N
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3563-8. PubMed ID: 18002767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Audio frequency in vivo optical coherence elastography.
    Adie SG; Kennedy BF; Armstrong JJ; Alexandrov SA; Sampson DD
    Phys Med Biol; 2009 May; 54(10):3129-39. PubMed ID: 19420415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation of skin lesions in 2-D and 3-D ultrasound images using a spatially coherent generalized Rayleigh mixture model.
    Pereyra M; Dobigeon N; Batatia H; Tourneret JY
    IEEE Trans Med Imaging; 2012 Aug; 31(8):1509-20. PubMed ID: 22434797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angular strain estimation method for elastography.
    Bae U; Kim Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2653-61. PubMed ID: 18276572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoacoustic spectrum analysis for microstructure characterization in biological tissue: analytical model.
    Xu G; Fowlkes JB; Tao C; Liu X; Wang X
    Ultrasound Med Biol; 2015 May; 41(5):1473-80. PubMed ID: 25748521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Estimators on Ultrasound Nakagami Imaging in Visualizing the Change in the Backscattered Statistics from a Rayleigh Distribution to a Pre-Rayleigh Distribution.
    Tsui PH; Wan YL; Tai DI; Shu YC
    Ultrasound Med Biol; 2015 Aug; 41(8):2240-51. PubMed ID: 25959057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A response to: A critical review and uniformized representation of statistical distributions modeling the ultrasound echo envelope.
    Nillesen MM; Lopata RG; Thijssen JM; Kapusta L; de Korte CL
    Ultrasound Med Biol; 2011 Apr; 37(4):674; author reply 675-6. PubMed ID: 21208734
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.