These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 21096026)

  • 21. Whitening of the electromyogram for improved classification accuracy in prosthesis control.
    Liu L; Liu P; Clancy EA; Scheme E; Englehart KB
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2627-30. PubMed ID: 23366464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Classification of Transient Myoelectric Signals for the Control of Multi-Grasp Hand Prostheses.
    Kanitz G; Cipriani C; Edin BB
    IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1756-1764. PubMed ID: 30072331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis.
    Dosen S; Markovic M; Somer K; Graimann B; Farina D
    J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Swarm-wavelet based extreme learning machine for finger movement classification on transradial amputees.
    Anam K; Al-Jumaily A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4192-5. PubMed ID: 25570916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Online myoelectric control of a dexterous hand prosthesis by transradial amputees.
    Cipriani C; Antfolk C; Controzzi M; Lundborg G; Rosen B; Carrozza MC; Sebelius F
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):260-70. PubMed ID: 21292599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of the Myo armband for the classification of hand motions.
    Mendez I; Hansen BW; Grabow CM; Smedegaard EJL; Skogberg NB; Uth XJ; Bruhn A; Geng B; Kamavuako EN
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1211-1214. PubMed ID: 28813986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses.
    Li G; Schultz AE; Kuiken TA
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):185-92. PubMed ID: 20071269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance of electromyography recorded using textile electrodes in classifying arm movements.
    Li G; Geng Y; Tao D; Zhou P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4243-6. PubMed ID: 22255276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time intelligent pattern recognition algorithm for surface EMG signals.
    Khezri M; Jahed M
    Biomed Eng Online; 2007 Dec; 6():45. PubMed ID: 18053184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):485-94. PubMed ID: 25955989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatially Filtered Low-Density EMG and Time-Domain Descriptors Improves Hand Movement Recognition.
    Al Taee AA; Khushaba RN; Al-Jumaily A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2671-2674. PubMed ID: 31946445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Classification complexity in myoelectric pattern recognition.
    Nilsson N; HÃ¥kansson B; Ortiz-Catalan M
    J Neuroeng Rehabil; 2017 Jul; 14(1):68. PubMed ID: 28693533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A real-time, practical sensor fault-tolerant module for robust EMG pattern recognition.
    Zhang X; Huang H
    J Neuroeng Rehabil; 2015 Feb; 12():18. PubMed ID: 25888946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis.
    Bennett DA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):419-427. PubMed ID: 28320673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Framework of Temporal-Spatial Descriptors-Based Feature Extraction for Improved Myoelectric Pattern Recognition.
    Khushaba RN; Al-Timemy AH; Al-Ani A; Al-Jumaily A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1821-1831. PubMed ID: 28358690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 37. User training for pattern recognition-based myoelectric prostheses: improving phantom limb movement consistency and distinguishability.
    Powell MA; Kaliki RR; Thakor NV
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):522-32. PubMed ID: 24122566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography.
    Al-Timemy AH; Bugmann G; Escudero J; Outram N
    IEEE J Biomed Health Inform; 2013 May; 17(3):608-18. PubMed ID: 24592463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards the control of individual fingers of a prosthetic hand using surface EMG signals.
    Tenore F; Ramos A; Fahmy A; Acharya S; Etienne-Cummings R; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6146-9. PubMed ID: 18003418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of multiple dynamic factors on the performance of myoelectric pattern recognition.
    Khushaba RN; Al-Timemy A; Kodagoda S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1679-82. PubMed ID: 26736599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.