These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 21096029)

  • 21. Real-time myoelectric decoding of individual finger movements for a virtual target task.
    Smith RJ; Huberdeau D; Tenore F; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2376-9. PubMed ID: 19965192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of signal-to-noise ratio of myoelectric filters for prosthesis control.
    Meek SG; Fetherston SJ
    J Rehabil Res Dev; 1992; 29(4):9-20. PubMed ID: 1432730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An analytical approach to test and design upper limb prosthesis.
    Veer K
    J Med Eng Technol; 2015; 39(6):328-30. PubMed ID: 26122077
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A third arm - Design of a bypass prosthesis enabling incorporation.
    Wilson AW; Blustein DH; Sensinger JW
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1381-1386. PubMed ID: 28814013
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recording of electric signal passing through a pylon in direct skeletal attachment of leg prostheses with neuromuscular control.
    Pitkin M; Cassidy C; Muppavarapu R; Edell D
    IEEE Trans Biomed Eng; 2012 May; 59(5):1349-53. PubMed ID: 22345523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergistic Elbow Control for a Myoelectric Transhumeral Prosthesis.
    Alshammary NA; Bennett DA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):468-476. PubMed ID: 29432114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing the versatility of wireless biopotential acquisition for myoelectric prosthetic control.
    Bercich RA; Wang Z; Mei H; Hammer LH; Seburn KL; Hargrove LJ; Irazoqui PP
    J Neural Eng; 2016 Aug; 13(4):046012. PubMed ID: 27265358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration.
    Young AJ; Hargrove LJ; Kuiken TA
    IEEE Trans Biomed Eng; 2012 Mar; 59(3):645-52. PubMed ID: 22147289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of a bone-anchored device as a hard-wired conduit for transmitting EMG signals from implanted muscle electrodes.
    Al-Ajam Y; Lancashire H; Pendegrass C; Kang N; Dowling RP; Taylor SJ; Blunn G
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1654-9. PubMed ID: 23358938
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving transient state myoelectric signal recognition in hand movement classification using gyroscopes.
    Boschmann A; Nofen B; Platzner M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6035-8. PubMed ID: 24111115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Motor unit drive: a neural interface for real-time upper limb prosthetic control.
    Twardowski MD; Roy SH; Li Z; Contessa P; De Luca G; Kline JC
    J Neural Eng; 2019 Feb; 16(1):016012. PubMed ID: 30524105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decoding individuated finger flexions with Implantable MyoElectric Sensors.
    Baker JJ; Yatsenko D; Schorsch JF; DeMichele GA; Troyk PR; Hutchinson DT; Weir RF; Clark G; Greger B
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():193-6. PubMed ID: 19162626
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motor co-ordinates in primate red nucleus: preferential relation to muscle activation versus kinematic variables.
    Miller LE; Houk JC
    J Physiol; 1995 Oct; 488 ( Pt 2)(Pt 2):533-48. PubMed ID: 8568692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selection of sampling rate for EMG pattern recognition based prosthesis control.
    Li G; Li Y; Zhang Z; Geng Y; Zhou R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5058-61. PubMed ID: 21096026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The application of myoelectric hand prosthesis at different amputation levels below the elbow.
    Hierton T; Holmgren G; James U; Marsh L; Oberg K
    Scand J Rehabil Med; 1970; 2(1):23-6. PubMed ID: 5523814
    [No Abstract]   [Full Text] [Related]  

  • 37. Implantable multichannel wireless electromyography for prosthesis control.
    McDonnall D; Hiatt S; Smith C; Guillory KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1350-3. PubMed ID: 23366149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robust EMG sensing system based on data fusion for myoelectric control of a robotic arm.
    López NM; di Sciascio F; Soria CM; Valentinuzzi ME
    Biomed Eng Online; 2009 Feb; 8():5. PubMed ID: 19243627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors.
    Baker JJ; Scheme E; Englehart K; Hutchinson DT; Greger B
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):424-32. PubMed ID: 20378481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography.
    Al-Timemy AH; Bugmann G; Escudero J; Outram N
    IEEE J Biomed Health Inform; 2013 May; 17(3):608-18. PubMed ID: 24592463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.