These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 21096088)

  • 21. Real-Time Multi-Modal Estimation of Dynamically Evoked Emotions Using EEG, Heart Rate and Galvanic Skin Response.
    Val-Calvo M; Álvarez-Sánchez JR; Ferrández-Vicente JM; Díaz-Morcillo A; Fernández-Jover E
    Int J Neural Syst; 2020 Apr; 30(4):2050013. PubMed ID: 32114841
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving the accuracy of EEG emotion recognition by combining valence lateralization and ensemble learning with tuning parameters.
    Pane ES; Wibawa AD; Purnomo MH
    Cogn Process; 2019 Nov; 20(4):405-417. PubMed ID: 31338704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DAST: A Domain-Adaptive Learning Combining Spatio-Temporal Dynamic Attention for Electroencephalography Emotion Recognition.
    Jin H; Gao Y; Wang T; Gao P
    IEEE J Biomed Health Inform; 2024 May; 28(5):2512-2523. PubMed ID: 37607151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Effect of Time Window Length on EEG-Based Emotion Recognition.
    Ouyang D; Yuan Y; Li G; Guo Z
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning-based classification of valence emotion from electroencephalography.
    Ramzan M; Dawn S
    Int J Neurosci; 2019 Nov; 129(11):1085-1093. PubMed ID: 31215829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Steady-state visually evoked potential topography during processing of emotional valence in healthy subjects.
    Kemp AH; Gray MA; Eide P; Silberstein RB; Nathan PJ
    Neuroimage; 2002 Dec; 17(4):1684-92. PubMed ID: 12498742
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A spatial filtering approach to environmental emotion perception based on electroencephalography.
    Su Y; Chen P; Liu X; Li W; Lv Z
    Med Eng Phys; 2018 Oct; 60():77-85. PubMed ID: 30098935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From emotion perception to emotion experience: emotions evoked by pictures and classical music.
    Baumgartner T; Esslen M; Jäncke L
    Int J Psychophysiol; 2006 Apr; 60(1):34-43. PubMed ID: 15993964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EEG-based emotion estimation using adaptive tracking of discriminative frequency components.
    Shuang Liu ; Di Zhang ; Jingjing Tong ; Feng He ; Hongzhi Qi ; Lixin Zhang ; Dong Ming
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2231-2234. PubMed ID: 29060340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An unsupervised EEG decoding system for human emotion recognition.
    Liang Z; Oba S; Ishii S
    Neural Netw; 2019 Aug; 116():257-268. PubMed ID: 31125912
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EEG-based emotion estimation using Bayesian weighted-log-posterior function and perceptron convergence algorithm.
    Yoon HJ; Chung SY
    Comput Biol Med; 2013 Dec; 43(12):2230-7. PubMed ID: 24290940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep Learning Methods for Multi-Channel EEG-Based Emotion Recognition.
    Olamat A; Ozel P; Atasever S
    Int J Neural Syst; 2022 May; 32(5):2250021. PubMed ID: 35369851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low Valence Low Arousal Stimuli: An Effective Candidate for EEG-Based Biometrics Authentication System.
    Jeswani J; Govarthan PK; Selvaraj A; Prince A; Thomas J; Kalathe M; Subramaniam V; Agastinose Ronickom JF
    Stud Health Technol Inform; 2023 May; 302():257-261. PubMed ID: 37203658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parietal electroencephalogram beta asymmetry and selective attention to angry facial expressions in healthy human subjects.
    Schutter DJ; Putman P; Hermans E; van Honk J
    Neurosci Lett; 2001 Nov; 314(1-2):13-6. PubMed ID: 11698135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression EEG Multimodal Emotion Recognition Method Based on the Bidirectional LSTM and Attention Mechanism.
    Zhao Y; Chen D
    Comput Math Methods Med; 2021; 2021():9967592. PubMed ID: 34055043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrocortical amplification for emotionally arousing natural scenes: the contribution of luminance and chromatic visual channels.
    Miskovic V; Martinovic J; Wieser MJ; Petro NM; Bradley MM; Keil A
    Biol Psychol; 2015 Mar; 106():11-7. PubMed ID: 25640949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals From Wireless Low-cost Off-the-Shelf Devices.
    Katsigiannis S; Ramzan N
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):98-107. PubMed ID: 28368836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EEG Channel Correlation Based Model for Emotion Recognition.
    Islam MR; Islam MM; Rahman MM; Mondal C; Singha SK; Ahmad M; Awal A; Islam MS; Moni MA
    Comput Biol Med; 2021 Sep; 136():104757. PubMed ID: 34416570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the classification of emotional biosignals evoked while viewing affective pictures: an integrated data-mining-based approach for healthcare applications.
    Frantzidis CA; Bratsas C; Klados MA; Konstantinidis E; Lithari CD; Vivas AB; Papadelis CL; Kaldoudi E; Pappas C; Bamidis PD
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):309-18. PubMed ID: 20064762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying Suitable Brain Regions and Trial Size Segmentation for Positive/Negative Emotion Recognition.
    Sorinas J; Grima MD; Ferrandez JM; Fernandez E
    Int J Neural Syst; 2019 Mar; 29(2):1850044. PubMed ID: 30415631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.