These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21096152)

  • 1. Steering deep brain stimulation fields using a high resolution electrode array.
    Toader E; Decre MM; Martens HC
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2061-4. PubMed ID: 21096152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial steering of deep brain stimulation volumes using a novel lead design.
    Martens HCF; Toader E; Decré MMJ; Anderson DJ; Vetter R; Kipke DR; Baker KB; Johnson MD; Vitek JL
    Clin Neurophysiol; 2011 Mar; 122(3):558-566. PubMed ID: 20729143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Field Shaping for Deep Brain Stimulation With Thousands of Contacts in a Novel Electrode Geometry.
    Willsie AC; Dorval AD
    Neuromodulation; 2015 Oct; 18(7):542-50; discussion 550-1. PubMed ID: 26245306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spherical statistics for characterizing the spatial distribution of deep brain stimulation effects on neuronal activity.
    Xiao Y; Johnson MD
    J Neurosci Methods; 2015 Nov; 255():52-65. PubMed ID: 26275582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical deep brain stimulation strategies for orientation-selective pathway activation.
    Slopsema JP; Peña E; Patriat R; Lehto LJ; Gröhn O; Mangia S; Harel N; Michaeli S; Johnson MD
    J Neural Eng; 2018 Oct; 15(5):056029. PubMed ID: 30095084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current steering to control the volume of tissue activated during deep brain stimulation.
    Butson CR; McIntyre CC
    Brain Stimul; 2008 Jan; 1(1):7-15. PubMed ID: 19142235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Avoiding Internal Capsule Stimulation With a New Eight-Channel Steering Deep Brain Stimulation Lead.
    van Dijk KJ; Verhagen R; Bour LJ; Heida C; Veltink PH
    Neuromodulation; 2018 Aug; 21(6):553-561. PubMed ID: 29034586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of electrode design on the volume of tissue activated during deep brain stimulation.
    Butson CR; McIntyre CC
    J Neural Eng; 2006 Mar; 3(1):1-8. PubMed ID: 16510937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode.
    Zhang TC; Grill WM
    J Neural Eng; 2010 Dec; 7(6):066009. PubMed ID: 21084730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influences of interpolation error, electrode geometry, and the electrode-tissue interface on models of electric fields produced by deep brain stimulation.
    Howell B; Naik S; Grill WM
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):297-307. PubMed ID: 24448594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High efficiency electrodes for deep brain stimulation.
    Grill WM; Wei XF
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3298-301. PubMed ID: 19964297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro vs macro electrode DBS stimulation: A dosimetric study.
    Maggio F; Pasciuto T; Paffi A; Apollonio F; Parazzini M; Ravazzani P; d'Inzeo G
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2057-60. PubMed ID: 21096151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing deep brain stimulation parameter selection with detailed models of the electrode-tissue interface.
    McIntyre CC; Butson CR; Maks CB; Noecker AM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():893-5. PubMed ID: 17946871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tripolar current-steering stimulator ASIC for field shaping in deep brain stimulation.
    Valente V; Demosthenous A; Bayford R
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):197-207. PubMed ID: 23853142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the stimulus waveforms generated by implantable pulse generators for deep brain stimulation.
    Lempka SF; Howell B; Gunalan K; Machado AG; McIntyre CC
    Clin Neurophysiol; 2018 Apr; 129(4):731-742. PubMed ID: 29448149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.
    Gabran SR; Saad JH; Salama MM; Mansour RR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6485-8. PubMed ID: 19964439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes.
    Howell B; Huynh B; Grill WM
    J Neural Eng; 2015 Aug; 12(4):046030. PubMed ID: 26170244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards computer-assisted deep brain stimulation targeting with multiple active contacts.
    Bériault S; Xiao Y; Bailey L; Collins DL; Sadikot AF; Pike GB
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):487-94. PubMed ID: 23285587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sources and effects of electrode impedance during deep brain stimulation.
    Butson CR; Maks CB; McIntyre CC
    Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.