These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21096152)

  • 21. Explaining clinical effects of deep brain stimulation through simplified target-specific modeling of the volume of activated tissue.
    Mädler B; Coenen VA
    AJNR Am J Neuroradiol; 2012 Jun; 33(6):1072-80. PubMed ID: 22300931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of methodologies for modeling directional deep brain stimulation electrodes.
    Frankemolle-Gilbert AM; Howell B; Bower KL; Veltink PH; Heida T; McIntyre CC
    PLoS One; 2021; 16(12):e0260162. PubMed ID: 34910744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potentials and Limitations of Directional Deep Brain Stimulation: A Simulation Approach.
    Kramme J; Dembek TA; Treuer H; Dafsari HS; Barbe MT; Wirths J; Visser-Vandewalle V
    Stereotact Funct Neurosurg; 2021; 99(1):65-74. PubMed ID: 33080600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Model-Based Comparison of Deep Brain Stimulation Array Functionality with Varying Number of Radial Electrodes and Machine Learning Feature Sets.
    Teplitzky BA; Zitella LM; Xiao Y; Johnson MD
    Front Comput Neurosci; 2016; 10():58. PubMed ID: 27375470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation.
    Howell B; McIntyre CC
    J Neural Eng; 2016 Jun; 13(3):036023. PubMed ID: 27172137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Primary experimental study on safety of deep brain stimulation in RF electromagnetic field.
    Jun X; Luming L; Hongwei H
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3091-4. PubMed ID: 19963563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Particle swarm optimization for programming deep brain stimulation arrays.
    Peña E; Zhang S; Deyo S; Xiao Y; Johnson MD
    J Neural Eng; 2017 Feb; 14(1):016014. PubMed ID: 28068291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Novel Lead Design for Modulation and Sensing of Deep Brain Structures.
    Connolly AT; Vetter RJ; Hetke JF; Teplitzky BA; Kipke DR; Pellinen DS; Anderson DJ; Baker KB; Vitek JL; Johnson MD
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):148-57. PubMed ID: 26529747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations.
    Horn A; Kühn AA
    Neuroimage; 2015 Feb; 107():127-135. PubMed ID: 25498389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conductive nanogel-interfaced neural microelectrode arrays with electrically controlled in-situ delivery of manganese ions enabling high-resolution MEMRI for synchronous neural tracing with deep brain stimulation.
    Huang WC; Lo YC; Chu CY; Lai HY; Chen YY; Chen SY
    Biomaterials; 2017 Apr; 122():141-153. PubMed ID: 28119154
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical Optimization of Stimulation Strategies for a Directionally Segmented Deep Brain Stimulation Electrode Array.
    Xiao Y; Peña E; Johnson MD
    IEEE Trans Biomed Eng; 2016 Feb; 63(2):359-71. PubMed ID: 26208259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational modeling of an endovascular approach to deep brain stimulation.
    Teplitzky BA; Connolly AT; Bajwa JA; Johnson MD
    J Neural Eng; 2014 Apr; 11(2):026011. PubMed ID: 24608363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A computational model for bipolar deep brain stimulation of the subthalamic nucleus.
    Iacono MI; Neufeld E; Bonmassar G; Akinnagbe E; Jakab A; Cohen E; Kuster N; Kainz W; Angelone LM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6258-61. PubMed ID: 25571427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High resolution transcranial acoustoelectric imaging of current densities from a directional deep brain stimulator.
    Preston C; Alvarez AM; Barragan A; Becker J; Kasoff WS; Witte RS
    J Neural Eng; 2020 Feb; 17(1):016074. PubMed ID: 31978914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region.
    van Dijk KJ; Verhagen R; Chaturvedi A; McIntyre CC; Bour LJ; Heida C; Veltink PH
    J Neural Eng; 2015 Aug; 12(4):046003. PubMed ID: 26020096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. StimExplorer: deep brain stimulation parameter selection software system.
    Butson CR; Noecker AM; Maks CB; McIntyre CC
    Acta Neurochir Suppl; 2007; 97(Pt 2):569-74. PubMed ID: 17691349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation.
    Walckiers G; Fuchs B; Thiran JP; Mosig JR; Pollo C
    J Neurosci Methods; 2010 Jan; 186(1):90-6. PubMed ID: 19895845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling parkinsonian circuitry and the DBS electrode. II. Evaluation of a computer simulation model of the basal ganglia with and without subthalamic nucleus stimulation.
    Shils JL; Mei LZ; Arle JE
    Stereotact Funct Neurosurg; 2008; 86(1):16-29. PubMed ID: 17881885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization-Based Contact Fault Alleviation in Deep Brain Stimulation Leads.
    Cubo R; Astrom M; Medvedev A
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):69-76. PubMed ID: 29324404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation.
    Butson CR; McIntyre CC
    Clin Neurophysiol; 2005 Oct; 116(10):2490-500. PubMed ID: 16125463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.