These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21096178)

  • 1. Spectral models for 1D blood flow simulations.
    Tamburrelli V; Ferranti F; Antonini G; Cristina S; Dhaene T; Knockaert L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2598-601. PubMed ID: 21096178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational macromodeling of 1D blood flow in the human cardiovascular system.
    Ferranti F; Tamburrelli V; Antonini G
    Int J Numer Method Biomed Eng; 2015 Mar; 31(3):e02707. PubMed ID: 25656004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A numerical method of reduced complexity for simulating vascular hemodynamics using coupled 0D lumped and 1D wave propagation models.
    Kroon W; Huberts W; Bosboom M; van de Vosse F
    Comput Math Methods Med; 2012; 2012():156094. PubMed ID: 22654957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derivation of closed-form expression for the cerebral circulation models.
    Helal MA
    Comput Biol Med; 1994 Mar; 24(2):103-18. PubMed ID: 8026172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of time harmonic blood flow in the Mesenteric artery: comparing finite element and lattice Boltzmann methods.
    Axner L; Hoekstra AG; Jeays A; Lawford P; Hose R; Sloot PM
    Biomed Eng Online; 2009 Oct; 8():23. PubMed ID: 19799782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemodynamic numerical simulation and analysis of oscillatory blood flow in growing aneurysms.
    Wang L; Zhou X; Shen M; Sun Y; Sun G
    Biomed Mater Eng; 2014; 24(1):459-66. PubMed ID: 24211928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the method of characteristics for the study of shock waves in models of blood flow in the aorta.
    Shoucri RM; Shoucri MM
    Cardiovasc Eng; 2007 Mar; 7(1):1-6. PubMed ID: 17342422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of linearized wave propagation models for arterial blood flow analysis.
    Cox RH
    J Biomech; 1969 Jul; 2(3):251-65. PubMed ID: 16335088
    [No Abstract]   [Full Text] [Related]  

  • 9. Regularization of blood motion fields by modified Navier-Stokes equations.
    Tura A; Sarti A; Gaens T; Lamberti C
    Med Eng Phys; 1999 Jan; 21(1):27-36. PubMed ID: 10220134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation for the propagation of nonlinear pulsatile waves in arteries.
    Ma X; Lee GC; Wu SG
    J Biomech Eng; 1992 Nov; 114(4):490-6. PubMed ID: 1487901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions.
    Olufsen MS; Peskin CS; Kim WY; Pedersen EM; Nadim A; Larsen J
    Ann Biomed Eng; 2000; 28(11):1281-99. PubMed ID: 11212947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart.
    Formaggia L; Lamponi D; Tuveri M; Veneziani A
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):273-88. PubMed ID: 17132614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A parallel image-based blood flow simulator.
    Garbey M; Hadri B; Karmonik C
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():947-50. PubMed ID: 18002114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of blood flow in the mesenteric arterial system.
    Mabotuwana TD; Cheng LK; Pullan AJ
    Biomed Eng Online; 2007 May; 6():17. PubMed ID: 17484787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape optimization in unsteady blood flow: a numerical study of non-Newtonian effects.
    Abraham F; Behr M; Heinkenschloss M
    Comput Methods Biomech Biomed Engin; 2005 Jun; 8(3):201-12. PubMed ID: 16214714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape optimization in steady blood flow: a numerical study of non-Newtonian effects.
    Abraham F; Behr M; Heinkenschloss M
    Comput Methods Biomech Biomed Engin; 2005 Apr; 8(2):127-37. PubMed ID: 16154876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of branching blood flows on parallel computers.
    Yue X; Hwang FN; Shandas R; Cai XC
    Biomed Sci Instrum; 2004; 40():325-30. PubMed ID: 15133979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational approach for probing the flow through artificial heart devices.
    Kiris C; Kwak D; Rogers S; Chang ID
    J Biomech Eng; 1997 Nov; 119(4):452-60. PubMed ID: 9407285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-implicit numerical modeling of axially symmetric flows in compliant arterial systems.
    Casulli V; Dumbser M; Toro EF
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):257-72. PubMed ID: 25099329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A numerical study of the shape of the surface separating flow into branches in microvascular bifurcations.
    Enden G; Popel AS
    J Biomech Eng; 1992 Aug; 114(3):398-405. PubMed ID: 1522734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.