These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21096183)

  • 1. Comparison of steady-state and transient blood flow simulations of intracranial aneurysms.
    Geers AJ; Larrabide I; Morales HG; Frangi AF
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2622-5. PubMed ID: 21096183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patient-specific hemodynamic analysis of small internal carotid artery-ophthalmic artery aneurysms.
    Chien A; Tateshima S; Sayre J; Castro M; Cebral J; Viñuela F
    Surg Neurol; 2009 Nov; 72(5):444-50; discussion 450. PubMed ID: 19329152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter-patient variations in flow boundary conditions at middle cerebral artery from 7T PC-MRI and influence on Computational Fluid Dynamics of intracranial aneurysms.
    Rajabzadeh-Oghaz H; van Ooij P; Veeturi SS; Tutino VM; Zwanenburg JJ; Meng H
    Comput Biol Med; 2020 May; 120():103759. PubMed ID: 32421656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge.
    Valen-Sendstad K; Bergersen AW; Shimogonya Y; Goubergrits L; Bruening J; Pallares J; Cito S; Piskin S; Pekkan K; Geers AJ; Larrabide I; Rapaka S; Mihalef V; Fu W; Qiao A; Jain K; Roller S; Mardal KA; Kamakoti R; Spirka T; Ashton N; Revell A; Aristokleous N; Houston JG; Tsuji M; Ishida F; Menon PG; Browne LD; Broderick S; Shojima M; Koizumi S; Barbour M; Aliseda A; Morales HG; Lefèvre T; Hodis S; Al-Smadi YM; Tran JS; Marsden AL; Vaippummadhom S; Einstein GA; Brown AG; Debus K; Niizuma K; Rashad S; Sugiyama SI; Owais Khan M; Updegrove AR; Shadden SC; Cornelissen BMW; Majoie CBLM; Berg P; Saalfield S; Kono K; Steinman DA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):544-564. PubMed ID: 30203115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approximating hemodynamics of cerebral aneurysms with steady flow simulations.
    Geers AJ; Larrabide I; Morales HG; Frangi AF
    J Biomech; 2014 Jan; 47(1):178-85. PubMed ID: 24262847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of aging-induced flow waveform variation on hemodynamics in aneurysms present at the internal carotid artery: A computational model-based study.
    Xu L; Liang F; Zhao B; Wan J; Liu H
    Comput Biol Med; 2018 Oct; 101():51-60. PubMed ID: 30099239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the relationship between arterial flow and intra-aneurysmal hemodynamics.
    Morales HG; Bonnefous O
    J Biomech; 2015 Feb; 48(4):585-591. PubMed ID: 25638035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncertainty quantification of wall shear stress in intracranial aneurysms using a data-driven statistical model of systemic blood flow variability.
    Sarrami-Foroushani A; Lassila T; Gooya A; Geers AJ; Frangi AF
    J Biomech; 2016 Dec; 49(16):3815-3823. PubMed ID: 28573970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative comparison of hemodynamic parameters from steady and transient CFD simulations in cerebral aneurysms with focus on the aneurysm ostium.
    Karmonik C; Diaz O; Klucznik R; Grossman RG; Zhang YJ; Britz G; Lv N; Huang Q
    J Neurointerv Surg; 2015 May; 7(5):367-72. PubMed ID: 24721753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intra-aneurysmal flow patterns and wall shear stresses calculated with computational flow dynamics in an anterior communicating artery aneurysm depend on knowledge of patient-specific inflow rates.
    Karmonik C; Yen C; Grossman RG; Klucznik R; Benndorf G
    Acta Neurochir (Wien); 2009 May; 151(5):479-85; discussion 485. PubMed ID: 19343271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamic analysis of growing intracranial aneurysms arising from a posterior inferior cerebellar artery.
    Sugiyama S; Meng H; Funamoto K; Inoue T; Fujimura M; Nakayama T; Omodaka S; Shimizu H; Takahashi A; Tominaga T
    World Neurosurg; 2012 Nov; 78(5):462-8. PubMed ID: 22120259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.
    Xiang J; Siddiqui AH; Meng H
    J Biomech; 2014 Dec; 47(16):3882-90. PubMed ID: 25446264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow-splitting-based computation of outlet boundary conditions for improved cerebrovascular simulation in multiple intracranial aneurysms.
    Saalfeld S; Voß S; Beuing O; Preim B; Berg P
    Int J Comput Assist Radiol Surg; 2019 Oct; 14(10):1805-1813. PubMed ID: 31363984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical investigation of the hemodynamics in anatomically realistic lateral cerebral aneurysms.
    Valencia A; Munizaga J; Rivera R; Bravo E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2616-21. PubMed ID: 21096182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rest versus exercise hemodynamics for middle cerebral artery aneurysms: a computational study.
    Bowker TJ; Watton PN; Summers PE; Byrne JV; Ventikos Y
    AJNR Am J Neuroradiol; 2010 Feb; 31(2):317-23. PubMed ID: 19959776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Computational Fluid Dynamics Rupture Challenge 2013--Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms.
    Berg P; Roloff C; Beuing O; Voss S; Sugiyama S; Aristokleous N; Anayiotos AS; Ashton N; Revell A; Bressloff NW; Brown AG; Chung BJ; Cebral JR; Copelli G; Fu W; Qiao A; Geers AJ; Hodis S; Dragomir-Daescu D; Nordahl E; Bora Suzen Y; Owais Khan M; Valen-Sendstad K; Kono K; Menon PG; Albal PG; Mierka O; Münster R; Morales HG; Bonnefous O; Osman J; Goubergrits L; Pallares J; Cito S; Passalacqua A; Piskin S; Pekkan K; Ramalho S; Marques N; Sanchi S; Schumacher KR; Sturgeon J; Švihlová H; Hron J; Usera G; Mendina M; Xiang J; Meng H; Steinman DA; Janiga G
    J Biomech Eng; 2015 Dec; 137(12):121008. PubMed ID: 26473395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH): Phase I: Segmentation.
    Berg P; Voß S; Saalfeld S; Janiga G; Bergersen AW; Valen-Sendstad K; Bruening J; Goubergrits L; Spuler A; Cancelliere NM; Steinman DA; Pereira VM; Chiu TL; Tsang ACO; Chung BJ; Cebral JR; Cito S; Pallarès J; Copelli G; Csippa B; Paál G; Fujimura S; Takao H; Hodis S; Hille G; Karmonik C; Elias S; Kellermann K; Khan MO; Marsden AL; Morales HG; Piskin S; Finol EA; Pravdivtseva M; Rajabzadeh-Oghaz H; Paliwal N; Meng H; Seshadhri S; Howard M; Shojima M; Sugiyama SI; Niizuma K; Sindeev S; Frolov S; Wagner T; Brawanski A; Qian Y; Wu YA; Carlson KD; Dragomir-Daescu D; Beuing O
    Cardiovasc Eng Technol; 2018 Dec; 9(4):565-581. PubMed ID: 30191538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm.
    Steinman DA; Milner JS; Norley CJ; Lownie SP; Holdsworth DW
    AJNR Am J Neuroradiol; 2003 Apr; 24(4):559-66. PubMed ID: 12695182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.