These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21096211)

  • 1. Towards a closed-loop system for stimulation and recording: an in vitro approach with embryonic cardiomyocytes.
    Nguyen T; Braeken D; Musa S; Krylychkina O; Bartic C; Gielen G; Eberle W
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2735-8. PubMed ID: 21096211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous stimulation and recording of cardiac depolarization enabled by high-frequency stimulation.
    Giovangrandi L
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6471-4. PubMed ID: 25571478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local electrical stimulation of cultured embryonic cardiomyocytes with sub-micrometer nail structures.
    Braeken D; Jans D; Rand D; Huys R; Van Meerbergen B; Loo J; Borghs G; Callewaert G; Bartic C
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4816-9. PubMed ID: 19163794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CMOS-based microelectrode array for interaction with neuronal cultures.
    Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A
    J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microelectrode arrays: a new tool to measure embryonic heart activity.
    Reppel M; Pillekamp F; Lu ZJ; Halbach M; Brockmeier K; Fleischmann BK; Hescheler J
    J Electrocardiol; 2004; 37 Suppl():104-9. PubMed ID: 15534818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A system for neural recording and closed-loop intracortical microstimulation in awake rodents.
    Venkatraman S; Elkabany K; Long JD; Yao Y; Carmena JM
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):15-22. PubMed ID: 19224714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays.
    Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward true closed-loop neuromodulation: artifact-free recording during stimulation.
    Zhou A; Johnson BC; Muller R
    Curr Opin Neurobiol; 2018 Jun; 50():119-127. PubMed ID: 29471216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation and Artifact-Suppression Techniques for In Vitro High-Density Microelectrode Array Systems.
    Shadmani A; Viswam V; Chen Y; Bounik R; Dragas J; Radivojevic M; Geissler S; Sitnikov S; Muller J; Hierlemann A
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2481-2490. PubMed ID: 30605090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for isolating extracellular action potentials and removing stimulus artifacts from microelectrode recordings of neurons requiring minimal operator intervention.
    Montgomery EB; Gale JT; Huang H
    J Neurosci Methods; 2005 May; 144(1):107-25. PubMed ID: 15848245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral cancellation of microstimulation artifact for simultaneous neural recording in situ.
    Gnadt JW; Echols SD; Yildirim A; Zhang H; Paul K
    IEEE Trans Biomed Eng; 2003 Oct; 50(10):1129-35. PubMed ID: 14560765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A control-theoretic system identification framework and a real-time closed-loop clinical simulation testbed for electrical brain stimulation.
    Yang Y; Connolly AT; Shanechi MM
    J Neural Eng; 2018 Dec; 15(6):066007. PubMed ID: 30221624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A discrete-time control algorithm applied to closed-loop pacing of HL-1 cardiomyocytes.
    Whittington RH; Kovacs GT
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):21-30. PubMed ID: 18232343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed-signal template-based reduction scheme for stimulus artifact removal in electrical stimulation.
    Nguyen TK; Musa S; Eberle W; Bartic C; Gielen G
    Med Biol Eng Comput; 2013 Apr; 51(4):449-58. PubMed ID: 23242784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coincident recording and stimulation of single and multiple neuronal activity with one extracellular microelectrode.
    Hentall ID
    J Neurosci Methods; 1991 Dec; 40(2-3):181-91. PubMed ID: 1800855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of early neural spikes from stimulation electrodes using a DC-coupled low gain high resolution data acquisition system.
    Jung H; Kim J; Nam Y
    J Neurosci Methods; 2018 Jul; 304():118-125. PubMed ID: 29709657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-taper transfer function estimation for stimulation artifact removal from neural recordings.
    Chernyy N; Schiff SJ; Gluckman BJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2772-6. PubMed ID: 19163280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Off-site control of repolarization alternans in cardiac fibers.
    Krogh-Madsen T; Karma A; Riccio ML; Jordan PN; Christini DJ; Gilmour RF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011915. PubMed ID: 20365407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A system for MEA-based multisite stimulation.
    Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-frequency electrical stimulation of cardiac cells and application to artifact reduction.
    Dura B; Chen MQ; Inan OT; Kovacs GT; Giovangrandi L
    IEEE Trans Biomed Eng; 2012 May; 59(5):1381-90. PubMed ID: 22345525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.