These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 21096230)
1. Fractal feature of sEMG from Flexor digitorum superficialis muscle correlated with levels of contraction during low-level finger flexions. Arjunan SP; Kumar DK; Naik GR Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4614-7. PubMed ID: 21096230 [TBL] [Abstract][Full Text] [Related]
2. Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors. Arjunan SP; Kumar DK J Neuroeng Rehabil; 2010 Oct; 7():53. PubMed ID: 20964863 [TBL] [Abstract][Full Text] [Related]
3. A machine learning based method for classification of fractal features of forearm sEMG using Twin Support vector machines. Arjunan SP; Kumar DK; Naik GR Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4821-4. PubMed ID: 21097298 [TBL] [Abstract][Full Text] [Related]
4. Computation of fractal features based on the fractal analysis of surface electromyogram to estimate force of contraction of different muscles. Poosapadi Arjunan S; Kumar DK Comput Methods Biomech Biomed Engin; 2014; 17(3):210-6. PubMed ID: 22515486 [TBL] [Abstract][Full Text] [Related]
5. Use of sEMG in identification of low level muscle activities: features based on ICA and fractal dimension. Naik GR; Kumar DK; Arjunan S Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():364-7. PubMed ID: 19963459 [TBL] [Abstract][Full Text] [Related]
6. Relationship between Isometric Muscle Force and Fractal Dimension of Surface Electromyogram. Beretta-Piccoli M; Boccia G; Ponti T; Clijsen R; Barbero M; Cescon C Biomed Res Int; 2018; 2018():5373846. PubMed ID: 29736393 [TBL] [Abstract][Full Text] [Related]
7. Measuring complexity in different muscles during sustained contraction using fractal properties of SEMG signal. Arjunan SP; Kumar DK Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5656-5659. PubMed ID: 30441619 [TBL] [Abstract][Full Text] [Related]
8. Towards identification of finger flexions using single channel surface electromyography--able bodied and amputee subjects. Kumar DK; Poosapadi Arjunan S; Singh VP J Neuroeng Rehabil; 2013 Jun; 10():50. PubMed ID: 23758881 [TBL] [Abstract][Full Text] [Related]
9. Extracting and Classifying Spatial Muscle Activation Patterns in Forearm Flexor Muscles Using High-Density Electromyogram Recordings. Dai C; Hu X Int J Neural Syst; 2019 Feb; 29(1):1850025. PubMed ID: 29954235 [TBL] [Abstract][Full Text] [Related]
10. The detection of long-range correlations of operation force and sEMG with multifractal detrended fluctuation analysis. Li F; Li D; Wang C; Chen S; Lv M; Wang M Biomed Mater Eng; 2015; 26 Suppl 1():S1157-68. PubMed ID: 26405873 [TBL] [Abstract][Full Text] [Related]
11. Selective recruitment of single motor units in human flexor digitorum superficialis muscle during flexion of individual fingers. Butler TJ; Kilbreath SL; Gorman RB; Gandevia SC J Physiol; 2005 Aug; 567(Pt 1):301-9. PubMed ID: 15946972 [TBL] [Abstract][Full Text] [Related]
12. Electrical and mechanical response of finger flexor muscles during voluntary isometric contractions in elite rock-climbers. Esposito F; Limonta E; Cè E; Gobbo M; Veicsteinas A; Orizio C Eur J Appl Physiol; 2009 Jan; 105(1):81-92. PubMed ID: 18830618 [TBL] [Abstract][Full Text] [Related]
13. Force-Length Relationship Modeling of Wrist and Finger Flexor Muscles. Hauraix H; Goislard DE Monsabert B; Herbaut A; Berton E; Vigouroux L Med Sci Sports Exerc; 2018 Nov; 50(11):2311-2321. PubMed ID: 29933345 [TBL] [Abstract][Full Text] [Related]
14. Changes in spatial distribution of flexor digitorum superficialis muscle activity is correlated to finger's action. Yang DD; Hou WS; Wu XY; Zheng XL; Zheng J; Jiang YT Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4108-11. PubMed ID: 22255243 [TBL] [Abstract][Full Text] [Related]
15. Effect of grip span on maximal grip force and fatigue of flexor digitorum superficialis. Blackwell JR; Kornatz KW; Heath EM Appl Ergon; 1999 Oct; 30(5):401-5. PubMed ID: 10484275 [TBL] [Abstract][Full Text] [Related]
16. Characteristics of power spectrum density function of EMG during muscle contraction below 30%MVC. Roman-Liu D; Konarska M J Electromyogr Kinesiol; 2009 Oct; 19(5):864-74. PubMed ID: 18590966 [TBL] [Abstract][Full Text] [Related]
17. Physiological determinants of climbing-specific finger endurance and sport rock climbing performance. MacLeod D; Sutherland DL; Buntin L; Whitaker A; Aitchison T; Watt I; Bradley J; Grant S J Sports Sci; 2007 Oct; 25(12):1433-43. PubMed ID: 17786696 [TBL] [Abstract][Full Text] [Related]
18. Effect of wrist posture, rate of force development/relaxation, and isotonic contractions on finger force independence. May SE; Keir PJ J Electromyogr Kinesiol; 2018 Feb; 38():215-223. PubMed ID: 29221665 [TBL] [Abstract][Full Text] [Related]
19. Time-frequency analysis of SEMG--with special consideration to the interelectrode spacing. Alemu M; Kumar DK; Bradley A IEEE Trans Neural Syst Rehabil Eng; 2003 Dec; 11(4):341-5. PubMed ID: 14960108 [TBL] [Abstract][Full Text] [Related]
20. Fractal and twin SVM-based handgrip recognition for healthy subjects and trans-radial amputees using myoelectric signal. Arjunan SP; Kumar DK; Jayadeva J Biomed Tech (Berl); 2016 Feb; 61(1):87-94. PubMed ID: 26354833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]