These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21096286)

  • 21. Comprehensive analysis of area-specific and time-dependent changes in gene expression in the motor cortex of macaque monkeys during recovery from spinal cord injury.
    Higo N; Sato A; Yamamoto T; Oishi T; Nishimura Y; Murata Y; Onoe H; Isa T; Kojima T
    J Comp Neurol; 2018 May; 526(7):1110-1130. PubMed ID: 29355954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.
    Oza CS; Giszter SF
    J Neurosci; 2015 May; 35(18):7174-89. PubMed ID: 25948267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuropilin-1-mediated pruning of corticospinal tract fibers is required for motor recovery after spinal cord injury.
    Nakanishi T; Fujita Y; Yamashita T
    Cell Death Dis; 2019 Jan; 10(2):67. PubMed ID: 30683854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasticity of the spinal neural circuitry after injury.
    Edgerton VR; Tillakaratne NJ; Bigbee AJ; de Leon RD; Roy RR
    Annu Rev Neurosci; 2004; 27():145-67. PubMed ID: 15217329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compensatory changes at the cerebral cortical level after spinal cord injury.
    Nishimura Y; Isa T
    Neuroscientist; 2009 Oct; 15(5):436-44. PubMed ID: 19826168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reorganization of the primary motor cortex of adult macaque monkeys after sensory loss resulting from partial spinal cord injuries.
    Kambi N; Tandon S; Mohammed H; Lazar L; Jain N
    J Neurosci; 2011 Mar; 31(10):3696-707. PubMed ID: 21389224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. What Is Being Trained? How Divergent Forms of Plasticity Compete To Shape Locomotor Recovery after Spinal Cord Injury.
    Huie JR; Morioka K; Haefeli J; Ferguson AR
    J Neurotrauma; 2017 May; 34(10):1831-1840. PubMed ID: 27875927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ryk controls remapping of motor cortex during functional recovery after spinal cord injury.
    Hollis ER; Ishiko N; Yu T; Lu CC; Haimovich A; Tolentino K; Richman A; Tury A; Wang SH; Pessian M; Jo E; Kolodkin A; Zou Y
    Nat Neurosci; 2016 May; 19(5):697-705. PubMed ID: 27065364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain changes after spinal cord injury, a quantitative meta-analysis and review.
    Solstrand Dahlberg L; Becerra L; Borsook D; Linnman C
    Neurosci Biobehav Rev; 2018 Jul; 90():272-293. PubMed ID: 29702136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The present special issue on Gait recovery after spinal cord injury. Editorial.
    Molinari M; Scivoletto G
    Brain Res Bull; 2009 Jan; 78(1):1. PubMed ID: 18929627
    [No Abstract]   [Full Text] [Related]  

  • 31. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function.
    Smith AC; Knikou M
    Neural Plast; 2016; 2016():1216258. PubMed ID: 27293901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Learning to promote recovery after spinal cord injury.
    Grau JW; Baine RE; Bean PA; Davis JA; Fauss GN; Henwood MK; Hudson KE; Johnston DT; Tarbet MM; Strain MM
    Exp Neurol; 2020 Aug; 330():113334. PubMed ID: 32353465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensorimotor training promotes functional recovery and somatosensory cortical map reactivation following cervical spinal cord injury.
    Martinez M; Brezun JM; Zennou-Azogui Y; Baril N; Xerri C
    Eur J Neurosci; 2009 Dec; 30(12):2356-67. PubMed ID: 20092578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural plasticity after spinal cord injury.
    Ding Y; Kastin AJ; Pan W
    Curr Pharm Des; 2005; 11(11):1441-50. PubMed ID: 15853674
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reorganization and preservation of motor control of the brain in spinal cord injury: a systematic review.
    Kokotilo KJ; Eng JJ; Curt A
    J Neurotrauma; 2009 Nov; 26(11):2113-26. PubMed ID: 19604097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury.
    Hormigo KM; Zholudeva LV; Spruance VM; Marchenko V; Cote MP; Vinit S; Giszter S; Bezdudnaya T; Lane MA
    Exp Neurol; 2017 Jan; 287(Pt 2):276-287. PubMed ID: 27582085
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induced Neural Activity Promotes an Oligodendroglia Regenerative Response in the Injured Spinal Cord and Improves Motor Function after Spinal Cord Injury.
    Li Q; Houdayer T; Liu S; Belegu V
    J Neurotrauma; 2017 Dec; 34(24):3351-3361. PubMed ID: 28474539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasticity of motor systems after incomplete spinal cord injury.
    Raineteau O; Schwab ME
    Nat Rev Neurosci; 2001 Apr; 2(4):263-73. PubMed ID: 11283749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid functional recovery after spinal cord injury in young rats.
    Brown KM; Wolfe BB; Wrathall JR
    J Neurotrauma; 2005 May; 22(5):559-74. PubMed ID: 15892601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AAV-KLF7 Promotes Descending Propriospinal Neuron Axonal Plasticity after Spinal Cord Injury.
    Li WY; Wang Y; Zhai FG; Sun P; Cheng YX; Deng LX; Wang ZY
    Neural Plast; 2017; 2017():1621629. PubMed ID: 28884027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.