These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 21096305)
1. Feasibility of a hybrid-FES system for gait restoration in paraplegics. Quintero HA; Farris RJ; Durfee WK; Goldfarb M Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():483-6. PubMed ID: 21096305 [TBL] [Abstract][Full Text] [Related]
2. Effects of joint motion constraints on the gait of normal subjects and their implications on the further development of hybrid FES orthosis for paraplegic persons. Yang L; Condie DN; Granat MH; Paul JP; Rowley DI J Biomech; 1996 Feb; 29(2):217-26. PubMed ID: 8849815 [TBL] [Abstract][Full Text] [Related]
3. A semi-active hybrid neuroprosthesis for restoring lower limb function in paraplegics. Kirsch N; Alibeji N; Fisher L; Gregory C; Sharma N Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2557-60. PubMed ID: 25570512 [TBL] [Abstract][Full Text] [Related]
4. Further development of hybrid functional electrical stimulation orthoses. Yang L; Granat MH; Paul JP; Condie DN; Rowley DI Spinal Cord; 1996 Oct; 34(10):611-4. PubMed ID: 8896128 [TBL] [Abstract][Full Text] [Related]
5. Gait evaluation of a novel hip constraint orthosis with implication for walking in paraplegia. Audu ML; To CS; Kobetic R; Triolo RJ IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):610-8. PubMed ID: 20378478 [TBL] [Abstract][Full Text] [Related]
6. Optimal control of walking with functional electrical stimulation: a computer simulation study. Popović D; Stein RB; Oğuztöreli N; Lebiedowska M; Jonić S IEEE Trans Rehabil Eng; 1999 Mar; 7(1):69-79. PubMed ID: 10188609 [TBL] [Abstract][Full Text] [Related]
7. Engineering evaluation of the energy-storing orthosis FES gait system. Kangude A; Burgstahler B; Durfee W Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5927-30. PubMed ID: 21096941 [TBL] [Abstract][Full Text] [Related]
8. An Approach for the Cooperative Control of FES With a Powered Exoskeleton During Level Walking for Persons With Paraplegia. Ha KH; Murray SA; Goldfarb M IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):455-66. PubMed ID: 25915961 [TBL] [Abstract][Full Text] [Related]
9. Effect of powered gait orthosis on walking in individuals with paraplegia. Arazpour M; Ahmadi Bani M; Kashani RV; Tabatabai Ghomshe F; Mousavi ME; Hutchins SW Prosthet Orthot Int; 2013 Aug; 37(4):261-7. PubMed ID: 23172910 [TBL] [Abstract][Full Text] [Related]
10. Preliminary evaluation of a controlled-brake orthosis for FES-aided gait. Goldfarb M; Korkowski K; Harrold B; Durfee W IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):241-8. PubMed ID: 14518787 [TBL] [Abstract][Full Text] [Related]
11. Further development of hybrid functional electrical stimulation orthoses. Yang L; Granat MH; Paul JP; Condie DN; Rowley DI Artif Organs; 1997 Mar; 21(3):183-7. PubMed ID: 9148700 [TBL] [Abstract][Full Text] [Related]
12. Stimulation parameter optimization for FES supported standing up and walking in SCI patients. Bijak M; Rakos M; Hofer C; Mayr W; Strohhofer M; Raschka D; Kern H Artif Organs; 2005 Mar; 29(3):220-3. PubMed ID: 15725221 [TBL] [Abstract][Full Text] [Related]
13. Hybrid functional electrical stimulation with medial linkage knee-ankle-foot orthoses in complete paraplegics. Shimada Y; Hatakeyama K; Minato T; Matsunaga T; Sato M; Chida S; Itoi E Tohoku J Exp Med; 2006 Jun; 209(2):117-23. PubMed ID: 16707853 [TBL] [Abstract][Full Text] [Related]
14. Improving limb flexion in FES gait using the flexion withdrawal response for the spinal cord injured person. Granat MH; Heller BW; Nicol DJ; Baxendale RH; Andrews BJ J Biomed Eng; 1993 Jan; 15(1):51-6. PubMed ID: 8419682 [TBL] [Abstract][Full Text] [Related]
15. Regulating knee joint position by combining electrical stimulation with a controllable friction brake. Durfee WK; Hausdorff JM Ann Biomed Eng; 1990; 18(6):575-96. PubMed ID: 2281882 [TBL] [Abstract][Full Text] [Related]
16. Design and simulation of a pneumatic, stored-energy, hybrid orthosis for gait restoration. Durfee WK; Rivard A J Biomech Eng; 2005 Nov; 127(6):1014-9. PubMed ID: 16438242 [TBL] [Abstract][Full Text] [Related]
17. Design and simulation of a new powered gait orthosis for paraplegic patients. Arazpour M; Chitsazan A; Hutchins SW; Ghomshe FT; Mousavi ME; Takamjani EE; Aminian G; Rahgozar M; Bani MA Prosthet Orthot Int; 2012 Mar; 36(1):125-30. PubMed ID: 22235109 [TBL] [Abstract][Full Text] [Related]
18. Electrical stimulation of the rectus femoris during pre-swing diminishes hip and knee flexion during the swing phase of normal gait. Hernandez A; Lenz A; Thelen D IEEE Trans Neural Syst Rehabil Eng; 2010 Oct; 18(5):523-30. PubMed ID: 20934937 [TBL] [Abstract][Full Text] [Related]
19. Sensor-based hip control with hybrid neuroprosthesis for walking in paraplegia. To CS; Kobetic R; Bulea TC; Audu ML; Schnellenberger JR; Pinault G; Triolo RJ J Rehabil Res Dev; 2014; 51(2):229-44. PubMed ID: 24933721 [TBL] [Abstract][Full Text] [Related]
20. Physiologic costs of computer-controlled walking in persons with paraplegia using a reciprocating-gait orthosis. Petrofsky JS; Smith JB Arch Phys Med Rehabil; 1991 Oct; 72(11):890-6. PubMed ID: 1929807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]