These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21096312)

  • 1. The nucleus as a central structure in defining the mechanical properties of stem cells.
    Ribeiro AS; Dahl KN
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():831-4. PubMed ID: 21096312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells.
    Davidson PM; Fedorchak GR; Mondésert-Deveraux S; Bell ES; Isermann P; Aubry D; Allena R; Lammerding J
    Lab Chip; 2019 Nov; 19(21):3652-3663. PubMed ID: 31559980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large deformation finite element analysis of micropipette aspiration to determine the mechanical properties of the chondrocyte.
    Baaijens FP; Trickey WR; Laursen TA; Guilak F
    Ann Biomed Eng; 2005 Apr; 33(4):494-501. PubMed ID: 15909655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of analytical and inverse finite element approaches to estimate cell viscoelastic properties by micropipette aspiration.
    Zhao R; Wyss K; Simmons CA
    J Biomech; 2009 Dec; 42(16):2768-73. PubMed ID: 19765713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical properties of the nucleus studied by micropipette aspiration.
    Rowat AC
    Methods Mol Biol; 2009; 464():3-12. PubMed ID: 18951176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization of adult stem cells from bone marrow and perivascular niches.
    Ribeiro AJ; Tottey S; Taylor RW; Bise R; Kanade T; Badylak SF; Dahl KN
    J Biomech; 2012 Apr; 45(7):1280-7. PubMed ID: 22349118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical characterization of living and dead undifferentiated human adipose-derived stem cells by using atomic force microscopy.
    Hu K; Zhao F; Wang Q
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1319-23. PubMed ID: 24044923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of the mechano-chemical behaviour of the nuclear pore complex: current research and perspectives.
    Garcia A; Rodriguez Matas JF; Raimondi MT
    Integr Biol (Camb); 2016 Oct; 8(10):1011-1021. PubMed ID: 27713975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic properties of the cell nucleus.
    Guilak F; Tedrow JR; Burgkart R
    Biochem Biophys Res Commun; 2000 Mar; 269(3):781-6. PubMed ID: 10720492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress in stem cell differentiation directed by material and mechanical cues.
    Lin X; Shi Y; Cao Y; Liu W
    Biomed Mater; 2016 Feb; 11(1):014109. PubMed ID: 26836059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing eukaryotic cell mechanics via mesoscopic simulations.
    Lykov K; Nematbakhsh Y; Shang M; Lim CT; Pivkin IV
    PLoS Comput Biol; 2017 Sep; 13(9):e1005726. PubMed ID: 28922399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear Mechanics and Stem Cell Differentiation.
    Mao X; Gavara N; Song G
    Stem Cell Rev Rep; 2015 Dec; 11(6):804-12. PubMed ID: 26210993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universally Conserved Relationships between Nuclear Shape and Cytoplasmic Mechanical Properties in Human Stem Cells.
    Lozoya OA; Gilchrist CL; Guilak F
    Sci Rep; 2016 Mar; 6():23047. PubMed ID: 26976044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanics and deformation of the nucleus in micropipette aspiration experiment.
    Vaziri A; Mofrad MR
    J Biomech; 2007; 40(9):2053-62. PubMed ID: 17112531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle.
    Deguchi S; Maeda K; Ohashi T; Sato M
    J Biomech; 2005 Sep; 38(9):1751-9. PubMed ID: 16005465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry.
    Xavier M; Rosendahl P; Herbig M; Kräter M; Spencer D; Bornhäuser M; Oreffo RO; Morgan H; Guck J; Otto O
    Integr Biol (Camb); 2016 May; 8(5):616-23. PubMed ID: 26980074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterising the mechanical properties of haematopoietic and mesenchymal stem cells using micromanipulation and atomic force microscopy.
    Du M; Kavanagh D; Kalia N; Zhang Z
    Med Eng Phys; 2019 Nov; 73():18-29. PubMed ID: 31405755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical plasticity of the nucleus in stem cell differentiation.
    Pajerowski JD; Dahl KN; Zhong FL; Sammak PJ; Discher DE
    Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15619-24. PubMed ID: 17893336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered mechanical properties of the nucleus in disease.
    Lombardi ML; Lammerding J
    Methods Cell Biol; 2010; 98():121-41. PubMed ID: 20816233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the nucleus for cell mechanics: an elastic phase field approach.
    Chojowski R; Schwarz US; Ziebert F
    Soft Matter; 2024 Jun; 20(22):4488-4503. PubMed ID: 38804018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.