These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 21096331)
1. Hybrid EEG-EOG brain-computer interface system for practical machine control. Punsawad Y; Wongsawat Y; Parnichkun M Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1360-3. PubMed ID: 21096331 [TBL] [Abstract][Full Text] [Related]
2. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals. Jiang J; Zhou Z; Yin E; Yu Y; Hu D Biomed Mater Eng; 2014; 24(6):2919-25. PubMed ID: 25226998 [TBL] [Abstract][Full Text] [Related]
4. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects. Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371 [TBL] [Abstract][Full Text] [Related]
5. An EOG-Based Human-Machine Interface for Wheelchair Control. Huang Q; He S; Wang Q; Gu Z; Peng N; Li K; Zhang Y; Shao M; Li Y IEEE Trans Biomed Eng; 2018 Sep; 65(9):2023-2032. PubMed ID: 28767359 [TBL] [Abstract][Full Text] [Related]
6. EOG-sEMG Human Interface for Communication. Tamura H; Yan M; Sakurai K; Tanno K Comput Intell Neurosci; 2016; 2016():7354082. PubMed ID: 27418924 [TBL] [Abstract][Full Text] [Related]
7. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control. Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703 [TBL] [Abstract][Full Text] [Related]
8. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. Trejo LJ; Rosipal R; Matthews B IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300 [TBL] [Abstract][Full Text] [Related]
9. EEG- and EOG-Based Asynchronous Hybrid BCI: A System Integrating a Speller, a Web Browser, an E-Mail Client, and a File Explorer. He S; Zhou Y; Yu T; Zhang R; Huang Q; Chuai L; Mustafa MU; Gu Z; Yu ZL; Tan H; Li Y IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):519-530. PubMed ID: 31870987 [TBL] [Abstract][Full Text] [Related]
10. HMM based automated wheelchair navigation using EOG traces in EEG. Aziz F; Arof H; Mokhtar N; Mubin M J Neural Eng; 2014 Oct; 11(5):056018. PubMed ID: 25188730 [TBL] [Abstract][Full Text] [Related]
11. Motor prediction in Brain-Computer Interfaces for controlling mobile robots. Geng T; Gan JQ Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():634-7. PubMed ID: 19162735 [TBL] [Abstract][Full Text] [Related]
12. Faster self-organizing fuzzy neural network training and a hyperparameter analysis for a brain-computer interface. Coyle D; Prasad G; McGinnity TM IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1458-71. PubMed ID: 19493851 [TBL] [Abstract][Full Text] [Related]
13. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG). Witkowski M; Cortese M; Cempini M; Mellinger J; Vitiello N; Soekadar SR J Neuroeng Rehabil; 2014 Dec; 11():165. PubMed ID: 25510922 [TBL] [Abstract][Full Text] [Related]
14. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach. Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644 [TBL] [Abstract][Full Text] [Related]
15. xDAWN algorithm to enhance evoked potentials: application to brain-computer interface. Rivet B; Souloumiac A; Attina V; Gibert G IEEE Trans Biomed Eng; 2009 Aug; 56(8):2035-43. PubMed ID: 19174332 [TBL] [Abstract][Full Text] [Related]
16. The use of EEG modifications due to motor imagery for brain-computer interfaces. Cincotti F; Mattia D; Babiloni C; Carducci F; Salinari S; Bianchi L; Marciani MG; Babiloni F IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):131-3. PubMed ID: 12899254 [TBL] [Abstract][Full Text] [Related]
17. Exploring virtual environments with an EEG-based BCI through motor imagery. Leeb R; Scherer R; Keinrath C; Guger C; Pfurtscheller G Biomed Tech (Berl); 2005 Apr; 50(4):86-91. PubMed ID: 15884704 [TBL] [Abstract][Full Text] [Related]
18. Flexibility and practicality graz brain-computer interface approach. Scherer R; Müller-Putz GR; Pfurtscheller G Int Rev Neurobiol; 2009; 86():119-31. PubMed ID: 19607995 [TBL] [Abstract][Full Text] [Related]
19. Wheelchair control for disabled patients using EMG/EOG based human machine interface: a review. Kaur A J Med Eng Technol; 2021 Jan; 45(1):61-74. PubMed ID: 33302770 [TBL] [Abstract][Full Text] [Related]
20. The Strathclyde brain computer interface. Valsan G; Grychtol B; Lakany H; Conway BA Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():606-9. PubMed ID: 19963973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]