These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21096339)

  • 1. A single tri-axial accelerometer-based real-time personal life log system capable of activity classification and exercise information generation.
    Lee MW; Khan AM; Kim JH; Cho YS; Kim TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1390-3. PubMed ID: 21096339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-accelerometer-based daily physical activity classification.
    Long X; Yin B; Aarts RM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6107-10. PubMed ID: 19965261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer.
    Khan AM; Lee YK; Lee SY; Kim TS
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1166-72. PubMed ID: 20529753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerometer signal-based human activity recognition using augmented autoregressive model coefficients and artificial neural nets.
    Khan AM; Lee YK; Kim TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5172-5. PubMed ID: 19163882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JIM: a novel and efficient accelerometric magnitude to measure physical activity.
    Carús JL; Peláez V; López G; Lobato V
    Stud Health Technol Inform; 2012; 177():283-8. PubMed ID: 22942068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical Complex Activity Representation and Recognition Using Topic Model and Classifier Level Fusion.
    Liangying Peng ; Ling Chen ; Xiaojie Wu ; Haodong Guo ; Gencai Chen
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1369-1379. PubMed ID: 28113223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimum gravity vector and vertical acceleration estimation using a tri-axial accelerometer for falls and normal activities.
    Bourke AK; O'Donovan K; Clifford A; ÓLaighin G; Nelson J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7896-9. PubMed ID: 22256171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones.
    Khan AM; Siddiqi MH; Lee SW
    Sensors (Basel); 2013 Sep; 13(10):13099-122. PubMed ID: 24084108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time elderly activity monitoring system based on a tri-axial accelerometer.
    Kang DW; Choi JS; Lee JW; Chung SC; Park SJ; Tack GR
    Disabil Rehabil Assist Technol; 2010 Jul; 5(4):247-53. PubMed ID: 20302417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application of EMD in activity recognition based on a single triaxial accelerometer.
    Liao M; Guo Y; Qin Y; Wang Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1533-9. PubMed ID: 26405917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic activity classification based on automatic adaptation of postural orientation.
    Song SK; Jang J; Park SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6175-8. PubMed ID: 19964894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the performance of the activPAL Professional physical activity logger to a discrete accelerometer-based activity monitor.
    Godfrey A; Culhane KM; Lyons GM
    Med Eng Phys; 2007 Oct; 29(8):930-4. PubMed ID: 17134934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Varying behavior of different window sizes on the classification of static and dynamic physical activities from a single accelerometer.
    Fida B; Bernabucci I; Bibbo D; Conforto S; Schmid M
    Med Eng Phys; 2015 Jul; 37(7):705-11. PubMed ID: 25983067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring.
    Karantonis DM; Narayanan MR; Mathie M; Lovell NH; Celler BG
    IEEE Trans Inf Technol Biomed; 2006 Jan; 10(1):156-67. PubMed ID: 16445260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating intensity of physical activity: a comparison of wearable accelerometer and gyro sensors and 3 sensor locations.
    Pärkkä J; Ermes M; Antila K; van Gils M; Mänttäri A; Nieminen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1511-4. PubMed ID: 18002254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of accelerometer orientation for activity recognition.
    Friedman A; Hajj Chehade N; Chien C; Pottie G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2076-9. PubMed ID: 23366329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of type, duration, and intensity of physical activity using an accelerometer.
    Bonomi AG; Goris AH; Yin B; Westerterp KR
    Med Sci Sports Exerc; 2009 Sep; 41(9):1770-7. PubMed ID: 19657292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microcomputer-based daily living activity recording system.
    Matsuoka S; Yonezawa Y; Maki H; Ogawa H; Hahn AW; Thayer JF; Caldwell WM
    Biomed Sci Instrum; 2003; 39():220-3. PubMed ID: 12724898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M; Penders J; Vullers R; Amft O
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.