These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21096340)

  • 1. Automatic identification of Chronic Obstructive Pulmonary Disease Based on forced oscillation measurements and artificial neural networks.
    Amaral JL; Faria AC; Lopes AJ; Jansen JM; Melo PL
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1394-7. PubMed ID: 21096340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning algorithms and forced oscillation measurements applied to the automatic identification of chronic obstructive pulmonary disease.
    Amaral JL; Lopes AJ; Jansen JM; Faria AC; Melo PL
    Comput Methods Programs Biomed; 2012 Mar; 105(3):183-93. PubMed ID: 22018532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the forced oscillation technique in the detection of early smoking-induced respiratory changes.
    Faria AC; Lopes AJ; Jansen JM; Melo PL
    Biomed Eng Online; 2009 Sep; 8():22. PubMed ID: 19781078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of forced oscillation technique to assess lung function in geriatric COPD population.
    Tse HN; Tseng CZ; Wong KY; Yee KS; Ng LY
    Int J Chron Obstruct Pulmon Dis; 2016; 11():1105-18. PubMed ID: 27307726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Respiratory Impedance-Based Phenotypes Reflect Different Pathophysiologies in Chronic Obstructive Pulmonary Disease Patients.
    Matsuo Y; Ogawa E; Seto-Yukimura R; Ryujin Y; Kinose D; Yamaguchi M; Osawa M; Nagao T; Kurosawa H; Nakano Y
    Int J Chron Obstruct Pulmon Dis; 2019; 14():2971-2977. PubMed ID: 31908445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved method of early diagnosis of smoking-induced respiratory changes using machine learning algorithms.
    Amaral JL; Lopes AJ; Jansen JM; Faria AC; Melo PL
    Comput Methods Programs Biomed; 2013 Dec; 112(3):441-54. PubMed ID: 24001924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillometry and pulmonary MRI measurements of ventilation heterogeneity in obstructive lung disease: relationship to quality of life and disease control.
    Young HM; Guo F; Eddy RL; Maksym G; Parraga G
    J Appl Physiol (1985); 2018 Jul; 125(1):73-85. PubMed ID: 29543132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated quality control of forced oscillation measurements: respiratory artifact detection with advanced feature extraction.
    Pham TT; Leong PHW; Robinson PD; Gutzler T; Jee AS; King GG; Thamrin C
    J Appl Physiol (1985); 2017 Oct; 123(4):781-789. PubMed ID: 28546471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of exacerbations on respiratory system impedance measured by a forced oscillation technique in COPD: a prospective observational study.
    Kamada T; Kaneko M; Tomioka H
    Int J Chron Obstruct Pulmon Dis; 2017; 12():509-516. PubMed ID: 28223791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forced oscillation technique for early detection of the effects of smoking and COPD: contribution of fractional-order modeling.
    Ribeiro CO; Faria ACD; Lopes AJ; de Melo PL
    Int J Chron Obstruct Pulmon Dis; 2018; 13():3281-3295. PubMed ID: 30349233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning algorithms and forced oscillation measurements to categorise the airway obstruction severity in chronic obstructive pulmonary disease.
    Amaral JL; Lopes AJ; Faria AC; Melo PL
    Comput Methods Programs Biomed; 2015 Feb; 118(2):186-97. PubMed ID: 25435077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Home monitoring of within-breath respiratory mechanics by a simple and automatic forced oscillation technique device.
    Dellacà RL; Gobbi A; Pastena M; Pedotti A; Celli B
    Physiol Meas; 2010 Apr; 31(4):N11-24. PubMed ID: 20182000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory Artefact Removal in Forced Oscillation Measurements: A Machine Learning Approach.
    Pham TT; Thamrin C; Robinson PD; McEwan AL; Leong PHW
    IEEE Trans Biomed Eng; 2017 Aug; 64(8):1679-1687. PubMed ID: 28113281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impulse oscillometry system as an alternative diagnostic method for chronic obstructive pulmonary disease.
    Wei X; Shi Z; Cui Y; Mi J; Ma Z; Ren J; Li J; Xu S; Guo Y
    Medicine (Baltimore); 2017 Nov; 96(46):e8543. PubMed ID: 29145259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying neural network classifiers in the diagnosis of the obstructive sleep apnea syndrome from nocturnal pulse oximetric recordings.
    Marcos JV; Hornero R; Alvarez D; Del Campo F; López M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5174-7. PubMed ID: 18003173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated quantitative analysis of capnogram shape for COPD-normal and COPD-CHF classification.
    Mieloszyk RJ; Verghese GC; Deitch K; Cooney B; Khalid A; Mirre-Gonzalez MA; Heldt T; Krauss BS
    IEEE Trans Biomed Eng; 2014 Dec; 61(12):2882-90. PubMed ID: 24967981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Impulse oscillometry in the diagnosis of the severity of obstructive pulmonary disease].
    Winkler J; Hagert-Winkler A; Wirtz H; Schauer J; Kahn T; Hoheisel G
    Pneumologie; 2009 May; 63(5):266-75. PubMed ID: 19322746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential diagnosis of asthma and restrictive respiratory diseases by combining forced oscillation measurements, machine learning and neuro-fuzzy classifiers.
    Amaral JLM; Sancho AG; Faria ACD; Lopes AJ; Melo PL
    Med Biol Eng Comput; 2020 Oct; 58(10):2455-2473. PubMed ID: 32776208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel computer-aided lung nodule detection system for CT images.
    Tan M; Deklerck R; Jansen B; Bister M; Cornelis J
    Med Phys; 2011 Oct; 38(10):5630-45. PubMed ID: 21992380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients.
    Ebrahimi F; Mikaeili M; Estrada E; Nazeran H
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1151-4. PubMed ID: 19162868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.