BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 2109636)

  • 1. Heat shock induces a decrease in incorporation of 8-azidoadenosine 5'-triphosphate into a 42 kilodalton protein in Drosophila salivary glands.
    Rooney RD; Maffe W; Niemann JC; Petersen NS
    Biochim Biophys Acta; 1990 Apr; 1034(1):102-6. PubMed ID: 2109636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoaffinity labeling of ATP and NAD+ binding sites on recombinant human interleukin 2.
    Campbell S; Kim H; Doukas M; Haley B
    Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1243-6. PubMed ID: 2105502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carrier-free 8-azidoadenosine 5'-[gamma-32P]triphosphate.
    Sabbatini GP; von Holt C
    FEBS Lett; 1987 Nov; 224(1):117-20. PubMed ID: 2824239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium salicylate decreases intracellular ATP, induces both heat shock factor binding and chromosomal puffing, but does not induce hsp 70 gene transcription in Drosophila.
    Winegarden NA; Wong KS; Sopta M; Westwood JT
    J Biol Chem; 1996 Oct; 271(43):26971-80. PubMed ID: 8900183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The photoaffinity probe 8-azidoadenosine 5'-triphosphate selectively labels the heavy chain of Chlamydomonas 12 S dynein.
    Pfister KK; Haley BE; Witman GB
    J Biol Chem; 1984 Jul; 259(13):8499-504. PubMed ID: 6234314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of soluble and membrane-bound F1 ATPase of Rhodospirillum rubrum to the photoaffinity label 8-azido ATP.
    Eul U; Risi S; Schäfer HJ; Dose K
    Biochem Int; 1983 Jun; 6(6):723-9. PubMed ID: 6237651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoaffinity labeling of creatine kinase with 2-azido- and 8-azidoadenosine triphosphate: identification of two peptides from the ATP-binding domain.
    Olcott MC; Bradley ML; Haley BE
    Biochemistry; 1994 Oct; 33(39):11935-41. PubMed ID: 7918412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoaffinity labeling of the nucleotide binding site of actin.
    Hegyi G; Szilagyi L; Elzinga M
    Biochemistry; 1986 Sep; 25(19):5793-8. PubMed ID: 3778882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoaffinity labeling of a viral induced protein from tobacco. Characterization of nucleotide-binding properties.
    Evans RK; Haley BE; Roth DA
    J Biol Chem; 1985 Jun; 260(12):7800-4. PubMed ID: 3838993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3H-uridine incorporation in the puff 93D and in chromocentric heterochromatin of heat shocked salivary glands of Drosophila melanogaster.
    Mukherjee T; Lakhotia SC
    Chromosoma; 1979 Sep; 74(1):75-82. PubMed ID: 116828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoaffinity labeling of terminal deoxynucleotidyl transferase. 1. Active site directed interactions with 8-azido-2'-deoxyadenosine 5'-triphosphate.
    Evans RK; Coleman MS
    Biochemistry; 1989 Jan; 28(2):707-12. PubMed ID: 2713338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mammalian heat shock protein binding immunophilin (p59/HBI) is an ATP and GTP binding protein.
    Le Bihan S; Renoir JM; Radanyi C; Chambraud B; Joulin V; Catelli MG; Baulieu EE
    Biochem Biophys Res Commun; 1993 Sep; 195(2):600-7. PubMed ID: 8373400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP-binding properties of P glycoprotein from multidrug-resistant KB cells.
    Cornwell MM; Tsuruo T; Gottesman MM; Pastan I
    FASEB J; 1987 Jul; 1(1):51-4. PubMed ID: 2886389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation of an ATP-binding domain among RecA proteins from Proteus vulgaris, Erwinia carotovora, Shigella flexneri, and Escherichia coli K-12 and B/r.
    Knight KL; Hess RM; McEntee K
    J Bacteriol; 1988 Jun; 170(6):2427-32. PubMed ID: 3286605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein folding within and protein transport into mammalian microsomes are differentially affected by photoaffinity labeling of microsomes with 8-azido-ATP.
    Brunke M; Tyedmers J; Zimmermann R
    Biochem Biophys Res Commun; 1996 Jan; 218(2):454-60. PubMed ID: 8561777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunofluorescence localization of a small heat shock protein (hsp 23) in salivary gland cells of Drosophila melanogaster.
    Arrigo AP; Ahmad-Zadeh C
    Mol Gen Genet; 1981; 184(1):73-9. PubMed ID: 6801431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide metabolism in Drosophila melanogaster salivary glands during temperature and dinitrophenol-induced puffing.
    Ellgaard EG; Maxwell BL
    Cell Differ; 1975 Mar; 3(6):379-87. PubMed ID: 804999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The analysis of a temperature-sensitive (ts) mutation influencing the expression of heat shock-inducible genes in Drosophila melanogaster.
    Evgen'ev M; Levin A; Lozovskaya E
    Mol Gen Genet; 1979 Oct; 176(2):275-80. PubMed ID: 119128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of serine/threonine protein kinase activity intrinsic to the L protein of vesicular stomatitis virus New Jersey.
    Hammond DC; Haley BE; Lesnaw JA
    J Gen Virol; 1992 Jan; 73 ( Pt 1)():67-75. PubMed ID: 1309863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoaffinity labelling of the ATP-binding site of the epidermal growth factor-dependent protein kinase.
    Kudlow JE; Leung Y
    Biochem J; 1984 Jun; 220(3):677-83. PubMed ID: 6331826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.