These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 21096383)
1. An implantable VLSI architecture for real time spike sorting in cortically controlled Brain Machine Interfaces. Aghagolzadeh M; Zhang F; Oweiss K Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1569-72. PubMed ID: 21096383 [TBL] [Abstract][Full Text] [Related]
2. Impact of compressed sensing of motor cortical activity on spike train decoding in Brain Machine Interfaces. Aghagolzadeh M; Shetliffe M; Oweiss KG Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5302-5. PubMed ID: 19163914 [TBL] [Abstract][Full Text] [Related]
3. Complexity optimization and high-throughput low-latency hardware implementation of a multi-electrode spike-sorting algorithm. Dragas J; Jackel D; Hierlemann A; Franke F IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):149-58. PubMed ID: 25415989 [TBL] [Abstract][Full Text] [Related]
4. Low power and high accuracy spike sorting microprocessor with on-line interpolation and re-alignment in 90 nm CMOS process. Chen TC; Ma TC; Chen YY; Chen LG Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4485-8. PubMed ID: 23366924 [TBL] [Abstract][Full Text] [Related]
5. Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems. Zumsteg ZS; Kemere C; O'Driscoll S; Santhanam G; Ahmed RE; Shenoy KV; Meng TH IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):272-9. PubMed ID: 16200751 [TBL] [Abstract][Full Text] [Related]
6. Active microelectronic neurosensor arrays for implantable brain communication interfaces. Song YK; Borton DA; Park S; Patterson WR; Bull CW; Laiwalla F; Mislow J; Simeral JD; Donoghue JP; Nurmikko AV IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):339-45. PubMed ID: 19502132 [TBL] [Abstract][Full Text] [Related]
7. Neural cache: a low-power online digital spike-sorting architecture. Peng CC; Sabharwal P; Bashirullah R Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2004-7. PubMed ID: 19163086 [TBL] [Abstract][Full Text] [Related]
8. VLSI architecture of NEO spike detection with noise shaping filter and feature extraction using informative samples. Hoang L; Yang Z; Liu W Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():978-81. PubMed ID: 19963481 [TBL] [Abstract][Full Text] [Related]
9. Computationally efficient neural feature extraction for spike sorting in implantable high-density recording systems. Kamboh AM; Mason AJ IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):1-9. PubMed ID: 22899586 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of spike-detection algorithms for a brain-machine interface application. Obeid I; Wolf PD IEEE Trans Biomed Eng; 2004 Jun; 51(6):905-11. PubMed ID: 15188857 [TBL] [Abstract][Full Text] [Related]
11. Spike sorting algorithms and their efficient hardware implementation: a comprehensive survey. Zhang T; Rahimi Azghadi M; Lammie C; Amirsoleimani A; Genov R J Neural Eng; 2023 Apr; 20(2):. PubMed ID: 36972585 [No Abstract] [Full Text] [Related]
12. Comparison of spike sorting and thresholding of voltage waveforms for intracortical brain-machine interface performance. Christie BP; Tat DM; Irwin ZT; Gilja V; Nuyujukian P; Foster JD; Ryu SI; Shenoy KV; Thompson DE; Chestek CA J Neural Eng; 2015 Feb; 12(1):016009. PubMed ID: 25504690 [TBL] [Abstract][Full Text] [Related]
13. Frequency Band Separability Feature Extraction Method With Weighted Haar Wavelet Implementation for Implantable Spike Sorting. Yang Y; Mason AJ IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):530-538. PubMed ID: 27416601 [TBL] [Abstract][Full Text] [Related]
14. Feature extraction using extrema sampling of discrete derivatives for spike sorting in implantable upper-limb neural prostheses. Zamani M; Demosthenous A IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):716-26. PubMed ID: 24760942 [TBL] [Abstract][Full Text] [Related]
15. Deep compressive autoencoder for action potential compression in large-scale neural recording. Wu T; Zhao W; Keefer E; Yang Z J Neural Eng; 2018 Dec; 15(6):066019. PubMed ID: 30215605 [TBL] [Abstract][Full Text] [Related]
16. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces. Dethier J; Nuyujukian P; Ryu SI; Shenoy KV; Boahen K J Neural Eng; 2013 Jun; 10(3):036008. PubMed ID: 23574919 [TBL] [Abstract][Full Text] [Related]
17. Hardware Efficient Automatic Thresholding for NEO-Based Neural Spike Detection. Yang Y; Mason AJ IEEE Trans Biomed Eng; 2017 Apr; 64(4):826-833. PubMed ID: 27323353 [TBL] [Abstract][Full Text] [Related]
18. Improved multi-unit decoding at the brain-machine interface using population temporal linear filtering. Herzfeld DJ; Beardsley SA J Neural Eng; 2010 Aug; 7(4):046012. PubMed ID: 20644245 [TBL] [Abstract][Full Text] [Related]
19. On the variability of manual spike sorting. Wood F; Black MJ; Vargas-Irwin C; Fellows M; Donoghue JP IEEE Trans Biomed Eng; 2004 Jun; 51(6):912-8. PubMed ID: 15188858 [TBL] [Abstract][Full Text] [Related]
20. Technology-aware algorithm design for neural spike detection, feature extraction, and dimensionality reduction. Gibson S; Judy JW; Marković D IEEE Trans Neural Syst Rehabil Eng; 2010 Oct; 18(5):469-78. PubMed ID: 20525534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]