BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 21096386)

  • 21. Development of an implantable high-energy and compact battery system for artificial heart.
    Okamoto E; Inoue T; Watanabe K; Hashimoto T; Iwazawa E; Abe Y; Chinzei T; Isoyama T; Kobayashi S; Saito I; Sato F; Matsuki H; Imachi K; Mitamura Y
    Artif Organs; 2003 Feb; 27(2):184-8. PubMed ID: 12580777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implantable wireless battery recharging system for bladder pressure chronic monitoring.
    Young DJ; Cong P; Suster MA; Damaser M
    Lab Chip; 2015 Nov; 15(22):4338-47. PubMed ID: 26419677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Battery power comparison to charge medical devices in developing countries.
    Casanova AM; Bray AS; Powers TA; Nimunkar AJ; Webster JG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():931-4. PubMed ID: 19964250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transmission power requirements for novel ZigBee implants in the gastrointestinal tract.
    Valdastri P; Menciassi A; Dario P
    IEEE Trans Biomed Eng; 2008 Jun; 55(6):1705-10. PubMed ID: 18714834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An implantable micropower command receiver for telemetry battery power switching.
    Sweeney JD; Leung A; Ko WH
    Biotelem Patient Monit; 1981; 8(3):173-9. PubMed ID: 7295932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-power wireless micromanometer system for acute and chronic bladder-pressure monitoring.
    Majerus SJ; Fletter PC; Damaser MS; Garverick SL
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):763-7. PubMed ID: 20934942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Miniaturization of implantable wireless power receiver.
    Poon AS
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3217-20. PubMed ID: 19964059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Research for transcutaneous energy transfer based on PCB coreless planar circular spiral inductor coils].
    Wu B; Huang H; Feng Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Aug; 27(4):749-52. PubMed ID: 20842838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An ultrasonically controlled switching system for power management in implantable devices.
    Zhou J; Kim A; Ziaie B
    Biomed Microdevices; 2018 May; 20(2):42. PubMed ID: 29789965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The transcutaneous charger for implanted nerve stimulation device.
    Niu C; Hao H; Li L; Ma B; Wu M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4941-4. PubMed ID: 17946663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An area and power-efficient analog li-ion battery charger circuit.
    Do Valle B; Wentz CT; Sarpeshkar R
    IEEE Trans Biomed Circuits Syst; 2011 Apr; 5(2):131-7. PubMed ID: 23851201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implantable cardiac rhythm device batteries.
    Root MJ
    J Cardiovasc Transl Res; 2008 Dec; 1(4):254-7. PubMed ID: 20559932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A complete data and power telemetry system utilizing BPSK and LSK signaling for biomedical implants.
    Sonkusale S; Luo Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3216-9. PubMed ID: 19163391
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Energy-Efficient Implantable-Neural-Stimulator System with Wireless Charging and Dynamic Voltage Output.
    Fu X; Mai S; Wang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3835-3839. PubMed ID: 31946710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.
    Bocan KN; Sejdić E
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26999154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How to pass information and deliver energy to a network of implantable devices within the human body.
    Sun M; Hackworth SA; Tang Z; Gilbert G; Cardin S; Sclabassi RJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5286-9. PubMed ID: 18003200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PV-Assisted grid connected multi output electric vehicle charger with PV2V, G2V and PV2G functions.
    G R; Chokkalingam B; Munda JL
    PLoS One; 2024; 19(6):e0304637. PubMed ID: 38905302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A wireless optical power system for medical implants using low power near-IR laser.
    Saha A; Iqbal S; Karmaker M; Zinnat SF; Ali MT
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1978-1981. PubMed ID: 29060282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Implementation of wireless power transfer and communications for an implantable ocular drug delivery system.
    Tang TB; Smith S; Flynn BW; Stevenson JT; Gundlach AM; Reekie HM; Murray AF; Renshaw D; Dhillon B; Ohtori A; Inoue Y; Terry JG; Walton AJ
    IET Nanobiotechnol; 2008 Sep; 2(3):72-9. PubMed ID: 19045840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.