These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21096393)

  • 1. Decoder remapping to counteract neuron loss in brain-machine interfaces.
    Heliot R; Venkatraman S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1670-3. PubMed ID: 21096393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces.
    Dethier J; Nuyujukian P; Ryu SI; Shenoy KV; Boahen K
    J Neural Eng; 2013 Jun; 10(3):036008. PubMed ID: 23574919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ascertaining the importance of neurons to develop better brain-machine interfaces.
    Sanchez JC; Carmena JM; Lebedev MA; Nicolelis MA; Harris JG; Principe JC
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):943-53. PubMed ID: 15188862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time decoding of nonstationary neural activity in motor cortex.
    Wu W; Hatsopoulos NG
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):213-22. PubMed ID: 18586600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive decoding for brain-machine interfaces through Bayesian parameter updates.
    Li Z; O'Doherty JE; Lebedev MA; Nicolelis MA
    Neural Comput; 2011 Dec; 23(12):3162-204. PubMed ID: 21919788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins NW; Sanchez JC
    PLoS One; 2014; 9(1):e87253. PubMed ID: 24498055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance brain-machine interface enabled by an adaptive optimal feedback-controlled point process decoder.
    Shanechi MM; Orsborn A; Moorman H; Gowda S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6493-6. PubMed ID: 25571483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning to use a brain-machine interface: model, simulation and analysis.
    Jimenez J; Heliot R; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4551-4. PubMed ID: 19963835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of spike sorting and thresholding of voltage waveforms for intracortical brain-machine interface performance.
    Christie BP; Tat DM; Irwin ZT; Gilja V; Nuyujukian P; Foster JD; Ryu SI; Shenoy KV; Thompson DE; Chestek CA
    J Neural Eng; 2015 Feb; 12(1):016009. PubMed ID: 25504690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring time-scales of closed-loop decoder adaptation in brain-machine interfaces.
    Orsborn AL; Dangi S; Moorman HG; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5436-9. PubMed ID: 22255567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal calibration of the learning rate in closed-loop adaptive brain-machine interfaces.
    Hsieh HL; Shanechi MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1667-70. PubMed ID: 26736596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces.
    Xu K; Wang Y; Wang Y; Wang F; Hao Y; Zhang S; Zhang Q; Chen W; Zheng X
    J Neural Eng; 2013 Apr; 10(2):026008. PubMed ID: 23428877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superiority of nonlinear mapping in decoding multiple single-unit neuronal spike trains: a simulation study.
    Kim KH; Kim SS; Kim SJ
    J Neurosci Methods; 2006 Jan; 150(2):202-11. PubMed ID: 16099513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Likelihood Gradient Ascent (LGA): a closed-loop decoder adaptation algorithm for brain-machine interfaces.
    Dangi S; Gowda S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2768-71. PubMed ID: 24110301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an optical brain-machine interface.
    Utsugi K; Obata A; Sato H; Katsura T; Sagara K; Maki A; Koizumi H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5338-41. PubMed ID: 18003213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parameter estimation for maximizing controllability of linear brain-machine interfaces.
    Gowda S; Orsborn AL; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1314-7. PubMed ID: 23366140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces.
    Liao Y; Li H; Zhang Q; Fan G; Wang Y; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6513-6. PubMed ID: 25571488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on directional information in neural signals for brain-machine interfaces.
    Waldert S; Pistohl T; Braun C; Ball T; Aertsen A; Mehring C
    J Physiol Paris; 2009; 103(3-5):244-54. PubMed ID: 19665554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain-computer interface algorithms.
    Chase SM; Schwartz AB; Kass RE
    Neural Netw; 2009 Nov; 22(9):1203-13. PubMed ID: 19502004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascertaining neuron importance by information theoretical analysis in motor Brain-Machine Interfaces.
    Wang Y; Principe JC; Sanchez JC
    Neural Netw; 2009; 22(5-6):781-90. PubMed ID: 19615852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.