BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21096461)

  • 1. Early results on wrist based heart rate monitoring using mechanical transducers.
    Buxi D; Penders J; van Hoof C
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4407-10. PubMed ID: 21096461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A wrist-mounted arterial pulse interval and movement recording system.
    Sakyou F; Yonezawa Y; Maki H; Ogawa H; Hahn AW; Caldwell WM
    Biomed Sci Instrum; 2003; 39():183-6. PubMed ID: 12724891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabric-based integrated energy devices for wearable activity monitors.
    Jung S; Lee J; Hyeon T; Lee M; Kim DH
    Adv Mater; 2014 Sep; 26(36):6329-34. PubMed ID: 25070873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring.
    Park JJ; Hyun WJ; Mun SC; Park YT; Park OO
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6317-24. PubMed ID: 25735398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature low-power inertial sensors: promising technology for implantable motion capture systems.
    Lambrecht JM; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1138-47. PubMed ID: 24846651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-channel optical sensor-array for measuring ballistocardiograms and respiratory activity in bed.
    Brüser C; Kerekes A; Winter S; Leonhardt S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5042-5. PubMed ID: 23367061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ZigBee-based wireless multi-sensor system for physical activity assessment.
    Mo L; Liu S; Gao RX; John D; Staudenmayer J; Freedson P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():846-9. PubMed ID: 22254443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wireless surveillance for transjugular intrahepatic portosystemic shunts (TIPS): a feasibility study.
    Hirasaki KK; Watts JA; Suhocki PV
    Acad Radiol; 2010 Apr; 17(4):418-20. PubMed ID: 20207314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive measurement of instantaneous radial artery blood pressure. An instrument based on the volume-compensation method.
    Tanaka S; Gao S; Nogawa M; Yamakoshi K
    IEEE Eng Med Biol Mag; 2005; 24(4):32-7. PubMed ID: 16119210
    [No Abstract]   [Full Text] [Related]  

  • 10. Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological signals.
    Cai F; Yi C; Liu S; Wang Y; Liu L; Liu X; Xu X; Wang L
    Biosens Bioelectron; 2016 Mar; 77():907-13. PubMed ID: 26520253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Ultrasound Array for Point-of-Care Imaging and Patient Monitoring.
    Mierzwa AP; Huang SP; Nguyen KT; Culjat MO; Singh RS
    Stud Health Technol Inform; 2016; 220():241-4. PubMed ID: 27046585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion tolerance in wearable sensors--the challenge of motion artifact.
    Such O
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1542-5. PubMed ID: 18002263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-power sensor module for long-term activity monitoring.
    Leuenberger K; Gassert R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2237-41. PubMed ID: 22254785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motion based adaptive calibration of pulse transit time measurements to arterial blood pressure for an autonomous, wearable blood pressure monitor.
    McCombie DB; Reisner AT; Asada HH
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():989-92. PubMed ID: 19162824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable, cuff-less PPG-based blood pressure monitor with novel height sensor.
    Shaltis PA; Reisner A; Asada HH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():908-11. PubMed ID: 17946006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a Footwear-Based Gait Analysis System With Action-Related Feedback.
    Minto S; Zanotto D; Boggs EM; Rosati G; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):971-980. PubMed ID: 26561476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of multiple wearable inertial sensors in upper limb motion tracking.
    Zhou H; Stone T; Hu H; Harris N
    Med Eng Phys; 2008 Jan; 30(1):123-33. PubMed ID: 17251049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of multilayered thin-film piezoelectric transducer arrays.
    Li H; Du H; Xu L; Hu Y; Fan H; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2571-7. PubMed ID: 19942544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance analysis and early validation of a bi-modal ultrasound transducer.
    Lanata A; Scilingo EP; Francesconi R; De Rossi D
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1858-61. PubMed ID: 17945676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotubes (CNTs) based strain sensors for a wearable monitoring and biofeedback system for pressure ulcer prevention and rehabilitation.
    Boissy P; Genest J; Patenaude J; Poirier MS; Chenel V; Béland JP; Legault GA; Bernier L; Tapin D; Beauvais J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5824-7. PubMed ID: 22255664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.