These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 21096506)

  • 1. A digital driven right leg circuit.
    Haberman M; Spinelli E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6559-62. PubMed ID: 21096506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multichannel EEG acquisition scheme based on single ended amplifiers and digital DRL.
    Haberman MA; Spinelli EM
    IEEE Trans Biomed Circuits Syst; 2012 Dec; 6(6):614-8. PubMed ID: 23853262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High gain driven right leg circuit for dry electrode systems.
    Guerrero FN; Spinelli E
    Med Eng Phys; 2017 Jan; 39():117-122. PubMed ID: 27913174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Driving Right Leg Circuit (DgRL) for Improved Common Mode Rejection in Bio-Potential Acquisition Systems.
    Guermandi M; Scarselli EF; Guerrieri R
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):507-17. PubMed ID: 26285217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and validation of a wearable "DRL-less" EEG using a novel fully-reconfigurable architecture.
    Mahajan R; Morshed BI; Bidelman GM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4999-5002. PubMed ID: 28269391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single supply biopotential amplifier.
    Spinelli EM; Martinez NH; Mayosky MA
    Med Eng Phys; 2001 Apr; 23(3):235-8. PubMed ID: 11410389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated multichannel neural recording analog front-end ASIC with area-efficient driven right leg circuit.
    Tao Tang ; Wang Ling Goh ; Lei Yao ; Jia Hao Cheong ; Yuan Gao
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():217-220. PubMed ID: 29059849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis: Electroencephalography Acquisition System: Analog Design.
    Alkhorshid DR; Molaeezadeh SF; Alkhorshid MR
    Biomed Instrum Technol; 2020 Sep; 54(5):346-351. PubMed ID: 33049766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A transconductance driven-right-leg circuit.
    Spinelli EM; Martínez NH; Mayosky MA
    IEEE Trans Biomed Eng; 1999 Dec; 46(12):1466-70. PubMed ID: 10612904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG acquisition system based on active electrodes with common-mode interference suppression by Driving Right Leg circuit.
    Guermandi M; Bigucci A; Franchi Scarselli E; Guerrieri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3169-72. PubMed ID: 26736965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of sEMG-detecting circuit for EMG-Bridge.
    Xiao-Bin Chen ; Yu-Xuan Zhou ; Hai-Peng Wang ; Xiao-Ying Lu ; Zhi-Gong Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():382-385. PubMed ID: 29059890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can driven-right-leg circuits increase interference in ECG amplifiers?
    Gomez-Clapers J; Serrano-Finetti E; Casanella R; Pallas-Areny R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4780-3. PubMed ID: 22255407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Power High-Input-Impedance EEG Signal Acquisition SoC With Fully Integrated IA and Signal-Specific ADC for Wearable Applications.
    Tohidi M; Kargaard Madsen J; Moradi F
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1437-1450. PubMed ID: 31443053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of motion artifact rejection due to active electrodes and driven-right-leg circuit in spike detection algorithms.
    Nonclercq A; Mathys P
    IEEE Trans Biomed Eng; 2010 Nov; 57(11):. PubMed ID: 20615805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The design of CMOS general-purpose analog front-end circuit with tunable gain and bandwidth for biopotential signal recording systems.
    Chen WM; Yang WC; Tsai TY; Chiueh H; Wu CY
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4784-7. PubMed ID: 22255408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low-power self-biased neural amplifier for implantable EEG recording system ICs.
    Kim J; Pedrotti K
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1573-6. PubMed ID: 21096384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fast, robust algorithm for power line interference cancellation in neural recording.
    Keshtkaran MR; Yang Z
    J Neural Eng; 2014 Apr; 11(2):026017. PubMed ID: 24658388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Development of a digital EEG signal acquiring system based on virtual instrument technology].
    Ying J; Chen GF; He SL
    Zhongguo Yi Liao Qi Xie Za Zhi; 2009 Sep; 33(5):332-5. PubMed ID: 20073237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-differential recording and AGC using microcontrolled variable gain ASIC.
    Rieger R; Deng SL
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):47-54. PubMed ID: 22929480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Open Ephys electroencephalography (Open Ephys  +  EEG): a modular, low-cost, open-source solution to human neural recording.
    Black C; Voigts J; Agrawal U; Ladow M; Santoyo J; Moore C; Jones S
    J Neural Eng; 2017 Jun; 14(3):035002. PubMed ID: 28266930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.