These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21096514)

  • 1. Vigilance estimation by using electrooculographic features.
    Ma JX; Shi LC; Lu BL
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6591-4. PubMed ID: 21096514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multimodal approach to estimating vigilance using EEG and forehead EOG.
    Zheng WL; Lu BL
    J Neural Eng; 2017 Apr; 14(2):026017. PubMed ID: 28102833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved algorithm for the automatic detection and characterization of slow eye movements.
    Cona F; Pizza F; Provini F; Magosso E
    Med Eng Phys; 2014 Jul; 36(7):954-61. PubMed ID: 24768562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual and computer-based detection of slow eye movements in overnight and 24-h EOG recordings.
    Magosso E; Ursino M; Zaniboni A; Provini F; Montagna P
    Clin Neurophysiol; 2007 May; 118(5):1122-33. PubMed ID: 17368090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method for EOG features extraction from the forehead.
    Cai HY; Ma JX; Shi LC; Lu BL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3075-8. PubMed ID: 22254989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vigilance stages and performance in OSAS patients in a monotonous reaction time task.
    Kinnari K; Peter JH; Pietarinen A; Groete L; Penzel T; Värri A; Laippala P; Saastamoinen A; Cassel W; Hasan J
    Clin Neurophysiol; 2000 Jun; 111(6):1130-6. PubMed ID: 10825721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelet analysis of electroencephalographic and electro-oculographic changes during the sleep onset period.
    Magosso E; Ursino M; Provini F; Montagna P
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4006-10. PubMed ID: 18002878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two auto-detection methods for eye movements during eyes closed.
    Suzuki H; Matsuura M; Moriguchi K; Kojima T; Hiroshige Y; Matsuda T; Noda Y
    Psychiatry Clin Neurosci; 2001 Jun; 55(3):197-8. PubMed ID: 11422839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of the ocular artifacts from EEG data using a cascaded spatio-temporal processing.
    Liu T; Yao D
    Comput Methods Programs Biomed; 2006 Aug; 83(2):95-103. PubMed ID: 16884816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative assessments of arousal by analyzing microsaccade rates and pupil fluctuations prior to slow eye movements.
    Honda S; Kohama T; Tanaka T; Yoshida H
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2229-32. PubMed ID: 25570430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal stability of regression-based electrooculographic correction coefficients.
    Pham TT; Croft RJ; Cadusch PJ
    Psychophysiology; 2011 Jan; 48(1):96-101. PubMed ID: 20536903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.
    Ma J; Zhang Y; Cichocki A; Matsuno F
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):876-89. PubMed ID: 25398172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing of features for fatigue detection in EOG.
    Němcová A; Janoušek O; Vítek M; Provazník I
    Biomed Mater Eng; 2017; 28(4):379-392. PubMed ID: 28869429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal and spectral electrooculographic features in a discrete precision task.
    Gallicchio G; Ryu D; Krishnani M; Tasker GL; Pecunioso A; Jackson RC
    Psychophysiology; 2024 Mar; 61(3):e14461. PubMed ID: 37855151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of ocular artifacts from the REM sleep EEG.
    Waterman D; Woestenburg JC; Elton M; Hofman W; Kok A
    Sleep; 1992 Aug; 15(4):371-5. PubMed ID: 1519014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic sleep stage classification using two-channel electro-oculography.
    Virkkala J; Hasan J; Värri A; Himanen SL; Müller K
    J Neurosci Methods; 2007 Oct; 166(1):109-15. PubMed ID: 17681382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust EOG-based saccade recognition using multi-channel blind source deconvolution.
    Zhang B; Bi N; Zhang C; Gao X; Lv Z
    Biomed Tech (Berl); 2019 May; 64(3):309-324. PubMed ID: 29975664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Off-line and on-line vigilance estimation based on linear dynamical system and manifold learning.
    Shi LC; Lu BL
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6587-90. PubMed ID: 21096513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The frequency of rapid eye movements and blinks as an activation indicator (author's transl)].
    von Cramon D; Zihl J
    J Neurol; 1977 May; 215(2):115-25. PubMed ID: 68103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robust principal component analysis algorithm for EEG-based vigilance estimation.
    Shi LC; Duan RN; Lu BL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6623-6. PubMed ID: 24111261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.