These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21096538)

  • 1. Stiffness and position control of a prosthetic wrist by means of an EMG interface.
    Rao S; Carloni R; Stramigioli S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():495-8. PubMed ID: 21096538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding of Multiple Wrist and Hand Movements Using a Transient EMG Classifier.
    D'Accolti D; Dejanovic K; Cappello L; Mastinu E; Ortiz-Catalan M; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():208-217. PubMed ID: 36327175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Position and stiffness modulation of a wrist haptic device using myoelectric interface.
    Antuvan CW; Masia L
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():734-739. PubMed ID: 28813907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Myoelectric Control for Amputees through Transcranial Direct Current Stimulation.
    Pan L; Zhang D; Sheng X; Zhu X
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):1927-36. PubMed ID: 25730820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Source selection for real-time user intent recognition toward volitional control of artificial legs.
    Fan Zhang ; He Huang
    IEEE J Biomed Health Inform; 2013 Sep; 17(5):907-14. PubMed ID: 25055369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control.
    Daley H; Englehart K; Hargrove L; Kuruganti U
    J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees.
    Jiang N; Vest-Nielsen JL; Muceli S; Farina D
    J Neuroeng Rehabil; 2012 Jun; 9():42. PubMed ID: 22742707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-spectral filters for low-density surface electromyographic signal classification.
    Huang G; Zhang Z; Zhang D; Zhu X
    Med Biol Eng Comput; 2013 May; 51(5):547-55. PubMed ID: 23385330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective classification for improved robustness of myoelectric control under nonideal conditions.
    Scheme EJ; Englehart KB; Hudgins BS
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1698-705. PubMed ID: 21317073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison between force and position control strategies in myoelectric prostheses.
    Ameri A; Englehart KB; Parker PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1342-5. PubMed ID: 23366147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A technique for optimizing electrode placement for electromyographic control of prostheses.
    Walbran SH; Calius EP; Dunlop G; Anderson IA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1331-4. PubMed ID: 19963497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing EMG-Based Human-Machine Interfaces for Estimating Continuous, Coordinated Movements.
    Pan L; Crouch DL; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2145-2154. PubMed ID: 31478862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis.
    Bennett DA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):419-427. PubMed ID: 28320673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and quantitative performance evaluation of a noninvasive EMG computer interface.
    Choi C; Micera S; Carpaneto J; Kim J
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):188-91. PubMed ID: 19224732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography.
    Al-Timemy AH; Bugmann G; Escudero J; Outram N
    IEEE J Biomed Health Inform; 2013 May; 17(3):608-18. PubMed ID: 24592463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolving the effect of wrist position on myoelectric pattern recognition control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on Interaction Between Temporal and Spatial Information in Classification of EMG Signals for Myoelectric Prostheses.
    Menon R; Di Caterina G; Lakany H; Petropoulakis L; Conway BA; Soraghan JJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1832-1842. PubMed ID: 28436879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses.
    Kapelner T; Vujaklija I; Jiang N; Negro F; Aszmann OC; Principe J; Farina D
    J Neuroeng Rehabil; 2019 Apr; 16(1):47. PubMed ID: 30953528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface Prostheses With Classifier-Feedback-Based User Training.
    Fang Y; Zhou D; Li K; Liu H
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.