These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21096595)

  • 1. Pectoral muscle detection in mammograms based on the shortest path with endpoints learnt by SVMs.
    Domingues I; Cardoso JS; Amaral I; Moreira I; Passarinho P; Santa Comba J; Correia R; Cardoso MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3158-61. PubMed ID: 21096595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pectoral muscle detection in mammograms based on polar coordinates and the shortest path.
    Cardoso JS; Domingues I; Amaral I; Moreira I; Passarinho P; Santa Comba J; Correia R; Cardoso MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4781-4. PubMed ID: 21096253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic pectoral muscle segmentation on mediolateral oblique view mammograms.
    Kwok SM; Chandrasekhar R; Attikiouzel Y; Rickard MT
    IEEE Trans Med Imaging; 2004 Sep; 23(9):1129-40. PubMed ID: 15377122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pectoral muscle segmentation: a review.
    Ganesan K; Acharya UR; Chua KC; Min LC; Abraham KT
    Comput Methods Programs Biomed; 2013 Apr; 110(1):48-57. PubMed ID: 23270962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic identification of the pectoral muscle in mammograms.
    Ferrari RJ; Rangayyan RM; Desautels JE; Borges RA; Frère AF
    IEEE Trans Med Imaging; 2004 Feb; 23(2):232-45. PubMed ID: 14964567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammography image quality: model for predicting compliance with posterior nipple line criterion.
    Spuur K; Hung WT; Poulos A; Rickard M
    Eur J Radiol; 2011 Dec; 80(3):713-8. PubMed ID: 20621431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-aided identification of the pectoral muscle in digitized mammograms.
    Camilus KS; Govindan VK; Sathidevi PS
    J Digit Imaging; 2010 Oct; 23(5):562-80. PubMed ID: 19816741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robust method for segmenting pectoral muscle in mediolateral oblique (MLO) mammograms.
    Yin K; Yan S; Song C; Zheng B
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):237-248. PubMed ID: 30288698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Detection of Pectoral Muscle Region for Computer-Aided Diagnosis Using MIAS Mammograms.
    Yoon WB; Oh JE; Chae EY; Kim HH; Lee SY; Kim KG
    Biomed Res Int; 2016; 2016():5967580. PubMed ID: 27847817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pectoral muscle identification in mammograms.
    Camilus KS; Govindan VK; Sathidevi PS
    J Appl Clin Med Phys; 2011 Mar; 12(3):3285. PubMed ID: 21844845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and Segmentation of Pectoral Muscle on MLO-View Mammogram Using Enhancement Filter.
    Vikhe PS; Thool VR
    J Med Syst; 2017 Oct; 41(12):190. PubMed ID: 29071592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technique for preprocessing of digital mammogram.
    Maitra IK; Nag S; Bandyopadhyay SK
    Comput Methods Programs Biomed; 2012 Aug; 107(2):175-88. PubMed ID: 21669471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Automatic Pectoral Muscle Segmentation from Mammograms Using Texture Gradient and Euclidean Distance Regression.
    Bora VB; Kothari AG; Keskar AG
    J Digit Imaging; 2016 Feb; 29(1):115-25. PubMed ID: 26259521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic detection of pectoral muscle using average gradient and shape based feature.
    Chakraborty J; Mukhopadhyay S; Singla V; Khandelwal N; Bhattacharyya P
    J Digit Imaging; 2012 Jun; 25(3):387-99. PubMed ID: 22006275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ellipse-fitting based method for efficient registration of breast masses on two mammographic views.
    Pu J; Zheng B; Leader JK; Gur D
    Med Phys; 2008 Feb; 35(2):487-94. PubMed ID: 18383669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass auto-detection in mammogram based on wavelet transform modulus maximum.
    Ke L; He W; Kang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5760-3. PubMed ID: 19963653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An evaluation of contrast enhancement techniques for mammographic breast masses.
    Singh S; Bovis K
    IEEE Trans Inf Technol Biomed; 2005 Mar; 9(1):109-19. PubMed ID: 15787013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer-aided detection of breast masses on mammograms: dual system approach with two-view analysis.
    Wei J; Chan HP; Sahiner B; Zhou C; Hadjiiski LM; Roubidoux MA; Helvie MA
    Med Phys; 2009 Oct; 36(10):4451-60. PubMed ID: 19928076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometry-Based Pectoral Muscle Segmentation From MLO Mammogram Views.
    Taghanaki SA; Liu Y; Miles B; Hamarneh G
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2662-2671. PubMed ID: 28129144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A registration framework for the comparison of mammogram sequences.
    Marias K; Behrenbruch C; Parbhoo S; Seifalian A; Brady M
    IEEE Trans Med Imaging; 2005 Jun; 24(6):782-90. PubMed ID: 15957600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.